References
Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z. and Hu, Z. (2020) Data-driven Predictive Modelling of Mineral Prospectivity Using Machine Learning and Deep Learning Methods: A Case Study from Southern Jiangxi Province, China. Minerals, 10, Article 102. >https://doi.org/10.3390/min10020102
Hsieh, C., Zheng, K., Lin, C., Mei, L., Lu, L., Li, W., et al. (2021) Automated Bone Mineral Density Prediction and Fracture Risk Assessment Using Plain Radiographs via Deep Learning. Nature Communications, 12, Article No. 5472. >https://doi.org/10.1038/s41467-021-25779-x
Liu, C., Wang, W., Tang, J., Wang, Q., Zheng, K., Sun, Y., et al. (2023) A Deep-Learning-Based Mineral Prospectivity Modeling Framework and Workflow in Prediction of Porphyry-Epithermal Mineralization in the Duolong Ore District, Tibet. Ore Geology Reviews, 157, Article ID: 105419. >https://doi.org/10.1016/j.oregeorev.2023.105419
Abedi, M., Norouzi, G. and Fathianpour, N. (2013) Fuzzy Outranking Approach: A Knowledge-Driven Method for Mineral Prospectivity Mapping. International Journal of Applied Earth Observation and Geoinformation, 21, 556-567. >https://doi.org/10.1016/j.jag.2012.07.012
Liu, Y., Cheng, Q., Xia, Q. and Wang, X. (2014) Multivariate Analysis of Stream Sediment Data from Nanling Metallogenic Belt, South China. Geochemistry: Exploration, Environment, Analysis, 14, 331-340. >https://doi.org/10.1144/geochem2013-213
左仁广. 基于数据科学的矿产资源定量预测的理论与方法探索[J]. 地学前缘, 2021, 28(3): 49-55.
Carranza, E.J.M. and Laborte, A.G. (2015) Data-Driven Predictive Mapping of Gold Prospectivity, Baguio District, Philippines: Application of Random Forests Algorithm. Ore Geology Reviews, 71, 777-787. >https://doi.org/10.1016/j.oregeorev.2014.08.010
Ghezelbash, R., Maghsoudi, A., Shamekhi, M., Pradhan, B. and Daviran, M. (2022) Genetic Algorithm to Optimize the SVM and K-Means Algorithms for Mapping of Mineral Prospectivity. Neural Computing and Applications, 35, 719-733. >https://doi.org/10.1007/s00521-022-07766-5
毕晨曦, 刘亮明, 周飞虎. 融合动力学模拟的机器学习三维成矿预测: 以安徽铜山铜矿为例[J/OL]. 大地构造与成矿学: 1-16. >https://doi.org/10.16539/j.ddgzyckx.2023.01.104, 2024-02-28.
Puzyrev, V., Zelic, M. and Duuring, P. (2023) Applying Neural Networks-Based Modelling to the Prediction of Mineralization: A Case-Study Using the Western Australian Geochemistry (WACHEM) Database. Ore Geology Reviews, 152, Article ID: 105242. >https://doi.org/10.1016/j.oregeorev.2022.105242
Li, H., Li, X., Yuan, F., Jowitt, S.M., Zhang, M., Zhou, J., et al. (2020) Convolutional Neural Network and Transfer Learning Based Mineral Prospectivity Modeling for Geochemical Exploration of Au Mineralization within the Guandian-Zhangbaling Area, Anhui Province, China. Applied Geochemistry, 122, Article ID: 104747. >https://doi.org/10.1016/j.apgeochem.2020.104747
Xu, Y., Li, Z., Xie, Z., Cai, H., Niu, P. and Liu, H. (2021) Mineral Prospectivity Mapping by Deep Learning Method in Yawan-Daqiao Area, Gansu. Ore Geology Reviews, 138, Article ID: 104316. >https://doi.org/10.1016/j.oregeorev.2021.104316
黄勇杰, 高乐, 杨田, 等. 基于多尺度特征和元学习的智能预测找矿靶区实验研究[J]. 计算机应用研究, 2022, 39(6): 1772-1778.
Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A. and Vandergheynst, P. (2017) Geometric Deep Learning: Going Beyond Euclidean Data. IEEE Signal Processing Magazine, 34, 18-42. >https://doi.org/10.1109/msp.2017.2693418
Karacan, C.Ö., Erten, O. and Martín-Fernández, J.A. (2023) Assessment of Resource Potential from Mine Tailings Using Geostatistical Modeling for Compositions: A Methodology and Application to Katherine Mine Site, Arizona, USA. Journal of Geochemical Exploration, 245, Article ID: 107142. >https://doi.org/10.1016/j.gexplo.2022.107142
Aitchison, J. (1982) The Statistical Analysis of Compositional Data. Journal of the Royal Statistical Society Series B: Statistical Methodology, 44, 139-160. >https://doi.org/10.1111/j.2517-6161.1982.tb01195.x
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2020) Generative Adversarial Networks. Communications of the ACM, 63, 139-144. >https://doi.org/10.1145/3422622
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. and Yu, P.S. (2021) A Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 32, 4-24. >https://doi.org/10.1109/tnnls.2020.2978386
Veličković, P., Cucurull, G., Casanova, A., et al. (2017) Graph Attention Networks. arXiv: 1710.10903.
李钢, 陈太兵, 杨之博, 等. MBRNet: 融合残差连接的多分支手写字符识别网络[J/OL]. 计算机工程与应用: 1-12. >http://kns.cnki.net/kcms/detail/11.2127.tp.20240104.1338.036.html, 2024-02-28.