文使用了中国气象局国家信息中心提供的 1648站逐日平均温度和降水资料,为保证研究期间气温和降水数据的连续性,剔除有缺测及观测站点迁移的站点,最后得到426个台站。以35˚N为标准区分我国南、北方,得到187个北方站点,239个南方站点。大气环流资料为欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)提供的第五代大气逐日平均再分析资料ERA5,水平分辨率为0.25˚ × 0.25˚。本文所用数据的时间段为1980~2020年冬季。上述变量的异常值均去除其对应时间段的气候平均和长期趋势。本文中的冬季指的是上一年的12月到此年的2月,即1980年到2020年的冬季为1979年12月到2020年2月。
本文主要采用了多变量经验正交分解(MV-EOF),回归分析,合成分析等分析方法。
3. 中国冬季冷暖交替的主模态特征3.1. 中国冷暖冬交替的年际振荡模态Figure 1. The first MV-EOF mode of the average daily temperature of southern and northern stations in China for the winters (December to February) during 1979/1980~2019/2020. (a) The first MV-EOF intraseasonal time series of the average daily temperature of southern station (unit: K; red shading) and the average daily temperature of northern station (unit: K; blue shading); (b) The normalized first principal component (PC1)--图1. 我国1979/1980~2019/2020冬季(12、1、2月)南方站点平均日气温和北方站点平均日气温的MV-EOF第一模态。(a) 南方站点平均的日气温(单位:K;红色填色)和北方站点平均的日气温(单位:K;蓝色填色)的MV-EOF1季节内时间序列;(b) 标准化的第一模态主分量年际时间序列(PC1)--
Figure 2. The second MV-EOF mode of the average daily temperature of southern and northern stations in China for the winters (December to February) during 1979/1980~2019/2020. (a) The second MV-EOF intraseasonal time series of the average daily temperature of southern station (unit: K; red shading) and the average daily temperature of northern station (unit: K; blue shading); (b) The normalized second principal component (PC2)--图2. 我国1979/1980~2019/2020冬季(12、1、2月)南方站点平均日气温和北方站点平均日气温的MV-EOF第二模态。(a) 南方站点平均的日气温(单位:K;红色填色)和北方站点平均的日气温(单位:K;蓝色填色)的MV-EOF2季节内时间序列;(b) 标准化的第二模态主分量年际时间序列(PC2)--
Figure 3. Composited plots of high-value years for our early-winter mean (a) and late-winter mean (b) temperatures (unit: K); and low-value years for early-winter (c) and late-winter mean (d) temperatures (unit: K). All stations shown in the plots have passed the 90% significance test--图3. 我国前冬 (a)和后冬 (b)平均气温(单位:K)的高值年合成图;前冬 (c)和后冬 (d)平均气温(单位:K)的低值年合成图。图中显示的所有站点已过90%显著性检验--Figure 4. High- and low-value of PC2 annual composites of the temperature anomaly series of mean stations in southern and northern China. (a) Composited of high-value years for PC2; (b) Composited of low-value years for PC2--图4. 中国南方、北方平均站点气温距平序列的PC2高、低值年合成图。(a) PC2高值年份的合成图;(b) PC2低值年份合成图--4. 中国前后冬冷暖交替与北极极涡振荡的关系
Figure 5. High- and low-value annual composites of 100 hPa geopotential height anomalies and polar vortex anomalies (unit: gpm) in the early and late winter. (a)~(c) are high-value year composites and (d) (e) are low-value year composites; (a) (d) are early winter averages, (b) (e) are late winter averages, and (c) (f) are difference fields (pre-post). Filled colors are 100 hPa geopotential height anomalies, and contours are 100 hPa polar vortex anomalies (100 hPa geopotential height (0~360˚, 65˚N~90˚N) regionally averaged 100 hPa geopotential height). Black dots indicate that the 90% significance level was passed--图5. 前、后冬100 hPa位势高度异常及极涡异常(单位:gpm)的高、低值年合成图。(a)~(c)为高值年合成,(d) (e)为低值年合成图;(a) (d)为前冬平均,(b) (e)为后冬平均,(c) (f)为差值场(前–后)。填色为100 hPa位势高度异常,等值线为100 hPa极涡异常(100 hPa位势高度——(0~360˚, 65˚N~90˚N)区域平均的100 hPa位势高度)。打点表示通过90%的显著性水平的检验--
Figure 6. Regression plots of northern and southern temperature series composited for high- and low-value years of PC2 against 100 hPa geopotential height anomalies (unit: gpm). (a) (b) are composited for high-value years and (c) (d) for low-value years; black dots indicate tests that pass the 90% significance level--图6. PC2高、低值年合成的北方和南方温度序列与100 hPa位势高度异常(单位:gpm)的回归图。(a) (b)为高值年合成,(c) (d)为低值年合成;打点表示通过90%的显著性水平的检验--Figure 7. Composites of the Arctic “trilobal” vortex oscillation indices and their three regions indices in high- (a) and low-value (b) years of PC2--图7. PC2高值年(a)和低值年(b)合成的“三叶型”极涡振荡指数及其三个区域的指数变化--
Table 1. Correlation of the “trilobal” polar vortex oscillation index and its three key regions with the winter temperature series in the south and north of China in the high- and low-value years of PC2Table 1. Correlation of the “trilobal” polar vortex oscillation index and its three key regions with the winter temperature series in the south and north of China in the high- and low-value years of PC2 表1. PC2高、低值年“三叶型”极涡振荡指数及其三个关键区与中国冬季南、北方气温序列的相关性
References
陈隆勋, 邵永宁, 张清芬, 等. 近四十年我国气候变化的初步分析[J]. 应用气象学报, 1991, 2(2): 164-174.
王绍武, 叶瑾琳, 龚道溢, 等. 近百年中国年气温序列的建立[J]. 应用气象学报, 1998, 9(4): 392-401.
梁苏洁, 丁一汇, 赵南, 等. 近50年中国大陆冬季气温和区域环流的年代际变化研究[J]. 大气科学, 2014, 38(5): 974-992.
Lo, Y.T.E., Mitchell, D.M., Watson, P.A.G. and Screen, J.A. (2023) Changes in Winter Temperature Extremes from Future Arctic Sea‐Ice Loss and Ocean Warming. Geophysical Research Letters, 50, e2022GL102542. >https://doi.org/10.1029/2022gl102542
Wu, B. and Wang, J. (2002) Winter Arctic Oscillation, Siberian High and East Asian Winter Monsoon. Geophysical Research Letters, 29, 3-1-3-4. >https://doi.org/10.1029/2002gl015373
Jhun, J. and Lee, E. (2004) A New East Asian Winter Monsoon Index and Associated Characteristics of the Winter Monsoon. Journal of Climate, 17, 711-726. >https://doi.org/10.1175/1520-0442(2004)017<0711:aneawm>2.0.co;2
康丽华, 陈文, 魏科. 我国冬季气温年代际变化及其与大气环流异常变化的关系[J]. 气候与环境研究, 2006, 11(3): 330-339.
Wang, B., Wu, R. and Li, T. (2003) Atmosphere–warm Ocean Interaction and Its Impacts on Asian-Australian Monsoon Variation. Journal of Climate, 16, 1195-1211. >https://doi.org/10.1175/1520-0442(2003)16<1195:aoiaii>2.0.co;2
Wang, B., Wu, Z., Chang, C., Liu, J., Li, J. and Zhou, T. (2010) Another Look at Interannual-to-Interdecadal Variations of the East Asian Winter Monsoon: The Northern and Southern Temperature Modes. Journal of Climate, 23, 1495-1512. >https://doi.org/10.1175/2009jcli3243.1
汪子琪, 张文君, 耿新. 两类ENSO对中国北方冬季平均气温和极端低温的不同影响[J]. 气象学报, 2017, 75(4): 564-580.
丁一汇. 东亚冬季风的统计研究[J]. 热带气象, 1990, 6(2): 119-128.
康丽华, 陈文, 王林, 等. 我国冬季气温的年际变化及其与大气环流和海温异常的关系[J]. 气候与环境研究, 2009, 14(1): 45-53.
Huang, R., Chen, J., Wang, L. and Lin, Z. (2012) Characteristics, Processes, and Causes of the Spatio-Temporal Variabilities of the East Asian Monsoon System. Advances in Atmospheric Sciences, 29, 910-942. >https://doi.org/10.1007/s00376-012-2015-x
韦玮, 王林, 陈权亮, 等. 我国前冬和后冬气温年际变化的特征与联系[J]. 大气科学, 2014, 38(3): 524-536.
Hu, Y., Tung, K.K. and Liu, J. (2005) A Closer Comparison of Early and Late-Winter Atmospheric Trends in the Northern Hemisphere. Journal of Climate, 18, 3204-3216. >https://doi.org/10.1175/jcli3468.1
黄嘉佑, 胡永云. 中国冬季气温变化的趋向性研究[J]. 气象学报, 2007, 64(5): 614-621.
司东, 马丽娟, 王朋岭, 等. 2015/2016年冬季北极涛动异常活动及其对我国气温的影响[J]. 气象, 2016, 42(7): 892-897.
聂羽, 孙冷, 王东阡, 等. 2015/2016年前冬至隆冬北半球中高纬度暖冷急转及环流特征初析[J]. 气象, 2016, 42(10): 1223-1229.
韩荣青, 石柳, 袁媛. 2020/2021年冬季中国气候冷暖转折成因分析[J]. 气象, 2021, 47(7): 880-892.
韦玮, 王林, 陈权亮, 等. 我国前冬和后冬的划分及其气温的年际变异[J]. 大气科学, 2020, 44(1): 122-137.
Lü, Z., He, S., Li, F. and Wang, H. (2018) Impacts of the Autumn Arctic Sea Ice on the Intraseasonal Reversal of the Winter Siberian High. Advances in Atmospheric Sciences, 36, 173-188. >https://doi.org/10.1007/s00376-017-8089-8
Geng, X., Zhang, W., Stuecker, M.F., Liu, P., Jin, F. and Tan, G. (2016) Decadal Modulation of the Enso-East Asian Winter Monsoon Relationship by the Atlantic Multidecadal Oscillation. Climate Dynamics, 49, 2531-2544. >https://doi.org/10.1007/s00382-016-3465-0