Na Xu等人报道了一锅水热合成由氨基丙基三乙氧基硅烷和抗坏血酸开始的氨基功能化的水分散发光硅基纳米粒子(SiNPs)。对极端pH值具有较高的耐受性和较高的离子强度,在紫外线照射下具有优异的光稳定性,并且可以将OTC抗生素与四环素(TCs)家族中具有类似结构的其他抗生素区分开来。这个新开发的方法被成功地用于测定牛奶中的OTC,并且观察到的回收率表明传感器可以作为检测食品中的OTC的有效工具
[36]
。
References
Alcock, R.E., Sweetman, A. and Jones, K.C. (1999) Assessment of Organic Contanhnant Fate in Waste Water Treatment Plants I: Selected Compounds and Physicochemical Properties. Chemosphere, 38, 2247-2262. >https://doi.org/10.1016/s0045-6535(98)00444-5
Shen, D.S., Tao, X.Q., Shentu, J.L. and Wang, M.Z. (2014) Residues of Veterinary Antibiotics in Pig Feeds and Manures in Zhejiang Province. Advanced Materials Research, 1010, 301-304. >https://doi.org/10.4028/www.scientific.net/amr.1010-1012.301
Zhou, L., Ying, G., Liu, S., Zhang, R., Lai, H., Chen, Z., et al. (2013) Excretion Masses and Environmental Occurrence of Antibiotics in Typical Swine and Dairy Cattle Farms in China. Science of the Total Environment, 444, 183-195. >https://doi.org/10.1016/j.scitotenv.2012.11.087
Palmieri, B., Di Cerbo, A. and Laurino, C. (2014) Antibiotic Treatments in Zootechnology and Effects Induced on the Food Chain of Domestic Species and, Comparatively, the Human Specie. Nutrición Hospitalaria, 29, 1427-1433.
Blackburn, D.K. (2018) Sincerely.
Dempsey, B. (2023) Visibility, Hotspot Markings, and Type of Flight Operations Predicting Runway Incursion Rates. Master’s Thesis, Capella University.
Empedrad, R. (2003) Nonirritating Intradermal Skin Test Concentrations for Commonly Prescribed Antibiotics. Journal of Allergy and Clinical Immunology, 112, 629-630. >https://doi.org/10.1016/s0091-6749(03)01783-4
Macy, E. and Poon, K.Y.T. (2009) Self-reported Antibiotic Allergy Incidence and Prevalence: Age and Sex Effects. The American Journal of Medicine, 122, 778.E1-778.E7. >https://doi.org/10.1016/j.amjmed.2009.01.034
Di Cerbo, A., Canello, S., Guidetti, G., Laurino, C. and Palmieri, B. (2014) Unusual Antibiotic Presence in Gym Trained Subjects with Food Intolerance: A Case Report. Nutrición Hospitalaria, 30, 395-398.
Fife, R.S. and Sledge, G.W. (1998) Effects of Doxycycline on Cancer Cells in Vitro and in Vivo. Advances in Dental Research, 12, 94-96. >https://doi.org/10.1177/08959374980120012801
Medzhitov, R. (2007) Recognition of Microorganisms and Activation of the Immune Response. Nature, 449, 819-826. >https://doi.org/10.1038/nature06246
Böttiger, B.W., Arntz, H., Chamberlain, D.A., Bluhmki, E., Belmans, A., Danays, T., et al. (2008) Thrombolysis during Resuscitation for Out-Of-Hospital Cardiac Arrest. New England Journal of Medicine, 359, 2651-2662. >https://doi.org/10.1056/nejmoa070570
Iwasaki, A. and Medzhitov, R. (2010) Regulation of Adaptive Immunity by the Innate Immune System. Science, 327, 291-295. >https://doi.org/10.1126/science.1183021
Hu, X. and Ivashkiv, L.B. (2009) Cross-regulation of Signaling Pathways by Interferon-Γ: Implications for Immune Responses and Autoimmune Diseases. Immunity, 31, 539-550. >https://doi.org/10.1016/j.immuni.2009.09.002
Bengtsson, A.A. and Rönnblom, L. (2017) Role of Interferons in SLE. Best Practice&Research Clinical Rheumatology, 31, 415-428. >https://doi.org/10.1016/j.berh.2017.10.003
Crane, I.J. and Forrester, J.V. (2005) Th1 and Th2 Lymphocytes in Autoimmune Disease. Critical Reviews in Immunology, 25, 75-102. >https://doi.org/10.1615/critrevimmunol.v25.i2.10
Yu, S., Sharp, G.C. and Braley-Mullen, H. (2002) Dual Roles for IFN-γ, but Not for IL-4, in Spontaneous Autoimmune Thyroiditis in NOD.H-2h4 Mice. The Journal of Immunology, 169, 3999-4007. >https://doi.org/10.4049/jimmunol.169.7.3999
Baechler, E.C., Gregersen, P.K. and Behrens, T.W. (2004) The Emerging Role of Interferon in Human Systemic Lupus Erythematosus. Current Opinion in Immunology, 16, 801-807. >https://doi.org/10.1016/j.coi.2004.09.014
Moretta, L., Montaldo, E., Vacca, P., Del Zotto, G., Moretta, F., Merli, P., et al. (2014) Human Natural Killer Cells: Origin, Receptors, Function, and Clinical Applications. International Archives of Allergy and Immunology, 164, 253-264. >https://doi.org/10.1159/000365632
Poggi, A. and Zocchi, M.R. (2014) NK Cell Autoreactivity and Autoimmune Diseases. Frontiers in Immunology, 5, Article 27. >https://doi.org/10.3389/fimmu.2014.00027
Deniz, G., van de Veen, W. and Akdis, M. (2013) Natural Killer Cells in Patients with Allergic Diseases. Journal of Allergy and Clinical Immunology, 132, 527-535. >https://doi.org/10.1016/j.jaci.2013.07.030
Terrazzano, G., Sica, M., Gianfrani, C., Mazzarella, G., Maurano, F., De Giulio, B., et al. (2007) Gliadin Regulates the Nk-Dendritic Cell Cross-Talk by HLA-E Surface Stabilization. The Journal of Immunology, 179, 372-381. >https://doi.org/10.4049/jimmunol.179.1.372
Pollard, K.M., Cauvi, D.M., Toomey, C.B., Morris, K.V. and Kono, D.H. (2013) Interferon-γ and Systemic Autoimmunity. Discovery Medicine, 16, 123-131.
Pollard, K.M., Hultman, P. and Kono, D.H. (2010) Toxicology of Autoimmune Diseases. Chemical Research in Toxicology, 23, 455-466. >https://doi.org/10.1021/tx9003787
Dedeoglu, F. (2009) Drug-induced Autoimmunity. Current Opinion in Rheumatology, 21, 547-551. >https://doi.org/10.1097/bor.0b013e32832f13db
Vedove, C.D., Del Giglio, M., Schena, D. and Girolomoni, G. (2008) Drug-Induced Lupus Erythematosus. Archives of Dermatological Research, 301, 99-105. >https://doi.org/10.1007/s00403-008-0895-5
Rubin, R.L. (2021) Drug-Induced Lupus. In: Tsokos, G.C., Ed., Systemic Lupus Erythematosus, Academic Press, 535-547. >https://doi.org/10.1016/B978-0-12-814551-7.00056-8
Pollard, K.M., Hultman, P. and Kono, D.H. (2005) Immunology and Genetics of Induced Systemic Autoimmunity. Autoimmunity Reviews, 4, 282-288. >https://doi.org/10.1016/j.autrev.2004.12.005
Chopra, I. and Roberts, M. (2001) Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology Reviews, 65, 232-260. >https://doi.org/10.1128/mmbr.65.2.232-260.2001
Black, W.D. (1977) A Study of the Pharmacodynamics of Oxytetracycline in the Chicken. Poultry Science, 56, 1430-1434. >https://doi.org/10.3382/ps.0561430
Nguyen, D.C., Keller, R.A., Jett, J.H. and Martin, J.C. (1987) Detection of Single Molecules of Phycoerythrin in Hydrodynamically Focused Flows by Laser-Induced Fluorescence. Analytical Chemistry, 59, 2158-2161. >https://doi.org/10.1021/ac00144a032
Nolan, E.M. and Lippard, S.J. (2008) Tools and Tactics for the Optical Detection of Mercuric Ion. Chemical Reviews, 108, 3443-3480. >https://doi.org/10.1021/cr068000q
Ali, I. and Aboul-Enein, H.Y. (2002) Determination of Metal Ions in Water, Soil, and Sediment by Capillary Electrophoresis. Analytical Letters, 35, 2053-2076. >https://doi.org/10.1081/al-120015519
Huang, S., Gan, N., Li, T., Zhou, Y., Cao, Y. and Dong, Y. (2018) Electrochemical Aptasensor for Multi-Antibiotics Detection Based on Endonuclease and Exonuclease Assisted Dual Recycling Amplification Strategy. Talanta, 179, 28-36. >https://doi.org/10.1016/j.talanta.2017.10.016
Bahreyni, A., Luo, H., Ramezani, M., Alibolandi, M., Soheili, V., Danesh, N.M., et al. (2021) A Fluorescent Sensing Strategy for Ultrasensitive Detection of Oxytetracycline in Milk Based on Aptamer-Magnetic Bead Conjugate, Complementary Strand of Aptamer and PicOgreen. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, Article ID: 119009. >https://doi.org/10.1016/j.saa.2020.119009
Xu, N., Yuan, Y., Yin, J., Wang, X. and Meng, L. (2017) One-Pot Hydrothermal Synthesis of Luminescent Silicon-Based Nanoparticles for Highly Specific Detection of Oxytetracycline via Ratiometric Fluorescent Strategy. RSC Advances, 7, 48429-48436. >https://doi.org/10.1039/c7ra09338a
Hijaz, F., Nehela, Y., Gonzalez-Blanco, P. and Killiny, N. (2021) Development of Europium-Sensitized Fluorescence-Based Method for Sensitive Detection of Oxytetracycline in Citrus Tissues. Antibiotics, 10, Article 224. >https://doi.org/10.3390/antibiotics10020224
Chen, H., Peng, J., Yu, L., Chen, H., Sun, M., Sun, Z., et al. (2020) Calcium Ions Turn on the Fluorescence of Oxytetracycline for Sensitive and Selective Detection. Journal of Fluorescence, 30, 463-470. >https://doi.org/10.1007/s10895-020-02512-3
Yang, L., Zhao, H., Liu, N. and Wang, W. (2019) A Target Analyte Induced Fluorescence Band Shift of Piperazine Modified Carbon Quantum Dots: A Specific Visual Detection Method for Oxytetracycline. Chemical Communications, 55, 12364-12367. >https://doi.org/10.1039/c9cc05406e
Nawaz, N., Abu Bakar, N.K., Muhammad Ekramul Mahmud, H.N. and Jamaludin, N.S. (2021) Molecularly Imprinted Polymers-Based DNA Biosensors. Analytical Biochemistry, 630, Article ID: 114328. >https://doi.org/10.1016/j.ab.2021.114328
Malitesta, C., Mazzotta, E., Picca, R.A., Poma, A., Chianella, I. and Piletsky, S.A. (2011) MIP Sensors—The Electrochemical Approach. Analytical and Bioanalytical Chemistry, 402, 1827-1846. >https://doi.org/10.1007/s00216-011-5405-5
Deng, Q., Wu, J., Zhai, X., Fang, G. and Wang, S. (2013) Highly Selective Fluorescent Sensing of Proteins Based on a Fluorescent Molecularly Imprinted Nanosensor. Sensors, 13, 12994-13004. >https://doi.org/10.3390/s131012994
Ahmad, O.S., Bedwell, T.S., Esen, C., Garcia-Cruz, A. and Piletsky, S.A. (2019) Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends in Biotechnology, 37, 294-309. >https://doi.org/10.1016/j.tibtech.2018.08.009
Verma, R. and Gupta, B.D. (2013) Optical Fiber Sensor for the Detection of Tetracycline Using Surface Plasmon Resonance and Molecular Imprinting. The Analyst, 138, 7254. >https://doi.org/10.1039/c3an01098h
Sadik, O.A., Aluoch, A.O. and Zhou, A. (2009) Status of Biomolecular Recognition Using Electrochemical Techniques. Biosensors and Bioelectronics, 24, 2749-2765. >https://doi.org/10.1016/j.bios.2008.10.003
Marrazza, G. (2017) Aptamer Sensors. Biosensors, 7, Article 5.
Conroy, P.J., Hearty, S., Leonard, P. and O’Kennedy, R.J. (2009) Antibody Production, Design and Use for Biosensor-Based Applications. Seminars in Cell&Developmental Biology, 20, 10-26. >https://doi.org/10.1016/j.semcdb.2009.01.010
Wang, T., Chen, C., Larcher, L.M., Barrero, R.A. and Veedu, R.N. (2019) Three Decades of Nucleic Acid Aptamer Technologies: Lessons Learned, Progress and Opportunities on Aptamer Development. Biotechnology Advances, 37, 28-50. >https://doi.org/10.1016/j.biotechadv.2018.11.001
Hou, H., Bai, X., Xing, C., Gu, N., Zhang, B. and Tang, J. (2013) Aptamer-Based Cantilever Array Sensors for Oxytetracycline Detection. Analytical Chemistry, 85, 2010-2014. >https://doi.org/10.1021/ac3037574
Demidov, V., Frank-Kamenetskii, M.D., Egholm, M., Buchardt, O. and Nielsen, P.E. (1993) Sequence Selective Double Strand DNA Cleavage by Peptide Nucleic Acid (PNA) Targeting Using Nuclease S1. Nucleic Acids Research, 21, 2103-2107. >https://doi.org/10.1093/nar/21.9.2103
Lv, L., Li, D., Cui, C., Zhao, Y. and Guo, Z. (2017) Nuclease-Aided Target Recycling Signal Amplification Strategy for Ochratoxin a Monitoring. Biosensors and Bioelectronics, 87, 136-141. >https://doi.org/10.1016/j.bios.2016.08.024