Table 1. Principles and applicable conditions of typical farmland surface source pollution control technologiesTable 1. Principles and applicable conditions of typical farmland surface source pollution control technologies 表1. 典型农田面源污染控制技术原理及适用条件
References
Abdel daiem, M.M., Hatata, A., El-Gohary, E.H., Abd-Elhamid, H.F. and Said, N. (2020) Application of an Artificial Neural Network for the Improvement of Agricultural Drainage Water Quality Using a Submerged Biofilter. Environmental Science and Pollution Research, 28, 5854-5866. >https://doi.org/10.1007/s11356-020-10964-0
中华人民共和国生态环境部, 中华人民共和国国家统计局, 中华人民共和国农业农村部. 第二次全国污染源普查公报[EB/OL]. >https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/t20200610_783547.html, 2020-06-08.
Arias-Paić, M., Tsuchihashi, R., Gress, A., Miller, D., Papendick, J. and Kennedy, A.M. (2022) Treatment of Selenium-Laden Agricultural Drainage Water Using a Full-Scale Bioreactor. Journal of Environmental Engineering, 148, Article 04022014. >https://doi.org/10.1061/(asce)ee.1943-7870.0001990
Hou, X., Zhou, F., Leip, A., Fu, B., Yang, H., Chen, Y., et al. (2016) Spatial Patterns of Nitrogen Runoff from Chinese Paddy Fields. Agriculture, Ecosystems&Environment, 231, 246-254. >https://doi.org/10.1016/j.agee.2016.07.001
雷琪. 黄土高原玉米光温生产潜力及种植区适宜性评价[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2022.
Chang, A., Qiong, H. and Zheng, B. (2022) Analysis of Agricultural Non-Point Source Pollution in Henan Province (China) from the Perspective of Time and Space. Nature Environment and Pollution Technology, 21, 268-274. >https://doi.org/10.46488/nept.2022.v21i01.031
Ashour, M.A., Aly, T.E. and Hasan, A.E. (2020) New Technique for Preparing and Reusing Agricultural Drainage Water Safely in Irrigation. Limnological Review, 20, 123-133. >https://doi.org/10.2478/limre-2020-0013
Carstensen, M.V., Zak, D., van’t Veen, S.G.M., Wisniewska, K., Ovesen, N.B., Kronvang, B., et al. (2021) Nitrogen Removal and Greenhouse Gas Fluxes from Integrated Buffer Zones Treating Agricultural Drainage Water. Science of the Total Environment, 774, Article 145070. >https://doi.org/10.1016/j.scitotenv.2021.145070
兰志梅. 氮素对制种苜蓿根系特征、根瘤菌特性和种子产量的影响[D]: [硕士学位论文]. 乌鲁木齐: 新疆农业大学, 2021.
赵雅姣. 紫花苜蓿/禾本科牧草间作优势及其氮高效机理和土壤微生态效应研究[D]: [博士学位论文]. 兰州: 甘肃农业大学, 2020.
Aviles, D., Wesström, I. and Joel, A. (2020) Effect of Vegetation Removal on Soil Erosion and Bank Stability in Agricultural Drainage Ditches. Land, 9, Article 441. >https://doi.org/10.3390/land9110441
Erickson, A.J., Gulliver, J.S. and Weiss, P.T. (2012) Capturing Phosphates with Iron Enhanced Sand Filtration. Water Research, 46, 3032-3042. >https://doi.org/10.1016/j.watres.2012.03.009
Li, X., Zhang, W., Wu, J., Li, H., Zhao, T., Zhao, C., et al. (2021) Loss of Nitrogen and Phosphorus from Farmland Runoff and the Interception Effect of an Ecological Drainage Ditch in the North China Plain—A Field Study in a Modern Agricultural Park. Ecological Engineering, 169, Article 106310. >https://doi.org/10.1016/j.ecoleng.2021.106310
Jiang, C., Li, J., Li, H. and Li, Y. (2019) Nitrogen Retention and Purification Efficiency from Rainfall Runoff via Retrofitted Bioretention Cells. Separation and Purification Technology, 220, 25-32. >https://doi.org/10.1016/j.seppur.2019.03.036
Cui, Z., Huang, Z., Liu, Y., López-Vicente, M. and Wu, G. (2022) Natural Compensation Mechanism of Soil Water Infiltration through Decayed Roots in Semi-Arid Vegetation Species. Science of the Total Environment, 819, Article 151985. >https://doi.org/10.1016/j.scitotenv.2021.151985
Lesturgez, G., Poss, R., Hartmann, C., Bourdon, E., Noble, A. and Ratana-Anupap, S. (2004) Roots of Stylosanthes Hamata Create Macropores in the Compact Layer of a Sandy Soil. Plant and Soil, 260, 101-109. >https://doi.org/10.1023/b:plso.0000030184.24866.aa
Cai, Z., Li, Q., Bai, H., Zhu, C., Tang, G., Zhou, H., et al. (2022) Interactive Effects of Aquatic Nitrogen and Plant Biomass on Nitrous Oxide Emission from Constructed Wetlands. Environmental Research, 213, Article 113716. >https://doi.org/10.1016/j.envres.2022.113716
Meek, B.D., Rechel, E.A., Carter, L.M. and DeTar, W.R. (1989) Changes in Infiltration under Alfalfa as Influenced by Time and Wheel Traffic. Soil Science Society of America Journal, 53, 238-241. >https://doi.org/10.2136/sssaj1989.03615995005300010042x
柴雯, 王根绪, 李元寿, 等. 长江源区不同植被覆盖下土壤水分对降水的响应[J]. 冰川冻土, 2008, 30(2): 329-337.
Janke, B.D., Finlay, J.C. and Hobbie, S.E. (2017) Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution. Environmental Science&Technology, 51, 9569-9579. >https://doi.org/10.1021/acs.est.7b02225
陈文音, 陈章和, 何其凡, 等. 两种不同根系类型湿地植物的根系生长[J]. 生态学报, 2007, 27(2): 450-458.
Zuo, X., Zhang, H. and Yu, J. (2020) Microbial Diversity for the Improvement of Nitrogen Removal in Stormwater Bioretention Cells with Three Aquatic Plants. Chemosphere, 244, Article 125626. >https://doi.org/10.1016/j.chemosphere.2019.125626
Prado, B., Duwig, C., Etchevers, J., Gaudet, J.P. and Vauclin, M. (2011) Nitrate Fate in a Mexican Andosol: Is It Affected by Preferential Flow? Agricultural Water Management, 98, 1441-1450. >https://doi.org/10.1016/j.agwat.2011.04.013
王彬俨. 北京昌平区农地土壤优先路径特征及其对硝态氮运移的影响[D]: [硕士学位论文]. 北京: 北京林业大学, 2013.
Galdos, M.V., Brown, E., Rosolem, C.A., Pires, L.F., Hallett, P.D. and Mooney, S.J. (2020) Brachiaria Species Influence Nitrate Transport in Soil by Modifying Soil Structure with Their Root System. Scientific Reports, 10, Article No. 5072. >https://doi.org/10.1038/s41598-020-61986-0
Zhang, S.X., Zhang, S.H., Zhang, Y., et al. (2019) Impacts of Vegetation on Quantity and Quality of Runoff from Green Roofs. Environmental Science, 40, 3618-3625.
Fan, G., Li, Z., Wang, S., Huang, K. and Luo, J. (2019) Migration and Transformation of Nitrogen in Bioretention System during Rainfall Runoff. Chemosphere, 232, 54-62. >https://doi.org/10.1016/j.chemosphere.2019.05.177
Yoneyama, T. and Suzuki, A. (2019) Exploration of Nitrate-to-Glutamate Assimilation in Non-Photosynthetic Roots of Higher Plants by Studies of
15N-Tracing, Enzymes Involved, Reductant Supply, and Nitrate Signaling: A Review and Synthesis. Plant Physiology and Biochemistry, 136, 245-254. >https://doi.org/10.1016/j.plaphy.2018.12.011
Mehmood, T., Gaurav, G.K., Cheng, L., Klemeš, J.J., Usman, M., Bokhari, A. and Lu, J. (2021) A Review on Plant-Microbial Interactions, Functions, Mechanisms and Emerging Trends in Bioretention System to Improve Multi-Contaminated Stormwater Treatment. Journal of Environmental Management, 294, Article 113108. >https://doi.org/10.1016/j.jenvman.2021.113108
Skorobogatov, A., He, J., Chu, A., Valeo, C. and van Duin, B. (2020) The Impact of Media, Plants and Their Interactions on Bioretention Performance: A Review. Science of the Total Environment, 715, Article 136918. >https://doi.org/10.1016/j.scitotenv.2020.136918