Figure 10. The synthesis of dihydropyrrolizine derivatives by linear azidoenynes compounds--图10. 直链叠氮烯炔化合物合成二氢吡咯里嗪衍生物--Figure 11. The synthesis of dihydropyrrolizine derivatives by 3,4-dihydro-2H-pyrrole-2-carbonitriles--图11. 通过3,4-二氢-2H-吡咯-2-腈合成二氢吡咯里嗪衍生物--
2016年,Marco M. Nebe等人
[26]
报道了通过合成3,4-二氢-2H-吡咯-2-腈中间体(化合物3.10)来合成二氢吡咯里嗪类衍生物的方法。反应如(
图11
)所示,他们首先制备了化合物3.10,随后用LDA做碱,得到中间体3.11,随后加入1-溴-3氯丙烷作为烷基化试剂得到化合物3.12,最后再加入LDA使其发生分子内亲核exo-tet环化反应一锅法合成了目标化合物3.13,产率中等至优良。该方法为合成二氢吡咯里嗪衍生物提供了一个新的途径。
Figure 17. Microwave and silica gel promoted synthesis of dihydropyrrolizine derivatives--图17. 微波和硅胶促进合成二氢吡咯里嗪衍生物--Figure 18. The synthesis method of natural product Lamellarin family analogues--图18. 天然产物Lamellarin家族类似物的合成方法--
Figure 20. One pot synthesis of dihydropyrrolizine derivatives--图20. 一锅法合成二氢吡咯里嗪衍生物--Figure 21. Synthesis of multisubstituted dihydropyrrolizine derivatives through intermolecular [3 + 2] reaction--图21. 分子间[3 + 2]反应合成多取代二氢吡咯里嗪衍生物--
References
Hoang, L.S., Tran, M.H., Lee, J.S., To, D.C., Nguyen, V.T., Kim, J.A., et al. (2015) Anti-inflammatory Activity of Pyrrolizidine Alkaloids from the Leaves of Madhuca pasquieri (dubard). Chemical&Pharmaceutical Bulletin, 63, 481-484. >https://doi.org/10.1248/cpb.c14-00855
Tsukamoto, S., Tane, K., Ohta, T., Matsunaga, S., Fusetani, N. and van Soest, R.W.M. (2001) Four New Bioactive Pyrrole-Derived Alkaloids from the Marine Sponge Axinellabrevistyla. Journal of Natural Products, 64, 1576-1578. >https://doi.org/10.1021/np010280b
Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S. and Sharma, P. (2015) Pyrrole: A Resourceful Small Molecule in Key Medicinal Hetero-Aromatics. RSC Advances, 5, 15233-15266. >https://doi.org/10.1039/c4ra15710a
Yee, S.B., Kinser, S., Hill, D.A., Barton, C.C., Hotchkiss, J.A., Harkema, J.R., et al. (2000) Synergistic Hepatotoxicity from Coexposure to Bacterial Endotoxin and the Pyrrolizidine Alkaloid Monocrotaline. Toxicology and Applied Pharmacology, 166, 173-185. >https://doi.org/10.1006/taap.2000.8968
Narayanan, N.K., Nargi, D., Attur, M., et al. (2007) Anticancer Effects of Licofelone (ML-3000) in Prostate Cancer Cells. Anti-Cancer Research, 27, 2393-2402.
Jonas, R., Klockow, M., Lues, I., Prücher, H., Schliep, H. and Wurziger, H. (1993) Synthesis and Biological Activities of Meribendan and Related Heterocyclic Benzimidazolo-Pyridazinones. European Journal of Medicinal Chemistry, 28, 129-140. >https://doi.org/10.1016/0223-5234(93)90005-y
Gouda, A.M., Abdelazeem, A.H., Arafa, E.A. and Abdellatif, K.R.A. (2014) Design, Synthesis and Pharmacological Evaluation of Novel Pyrrolizine Derivatives as Potential Anticancer Agents. Bioorganic Chemistry, 53, 1-7. >https://doi.org/10.1016/j.bioorg.2014.01.001
Niwa, H., Ogawa, T., Okamoto, O. and Yamada, K. (1991) Alkylation of Nucleosides by Dehydromonocrotaline, the Putative Toxic Metabolite of the Carcinogenic Pyrrolizidine Alkaloid Monocrotaline. Tetrahedron Letters, 32, 927-930. >https://doi.org/10.1016/s0040-4039(00)92122-1
Li, W., Wang, K., Lin, G., Peng, Y. and Zheng, J. (2016) Lysine Adduction by Reactive Metabolite(s) of Monocrotaline. Chemical Research in Toxicology, 29, 333-341. >https://doi.org/10.1021/acs.chemrestox.5b00488
Rooks, W.H., Tomolonis, A.J., Maloney, P.J., Wallach, M.B. and Schuler, M.E. (1982) The Analgesic and Anti-Inflammatory Profile of (±)-5-Benzoyl-1, 2-Dihydro-3H-Pyrrolo[1, 2a]Pyrrole-1-Carboxylic Acid (RS-37619). Agents and Actions, 12, 684-690. >https://doi.org/10.1007/bf01965079
Alanazi, F.K., Abdel Rahman, A.A., Mahrous, G.M. and Alsarra, I.A. (2007) Formulation and Physicochemical Characterisation of Buccoadhesive Films Containing Ketorolac. Journal of Drug Delivery Science and Technology, 17, 183-192. >https://doi.org/10.1016/s1773-2247(07)50034-1
Liedtke, A.J., Keck, P.R.W.E.F., Lehmann, F., Koeberle, A., Werz, O. and Laufer, S.A. (2009) Arylpyrrolizines as Inhibitors of Microsomal Prostaglandin E
2Synthase-1 (mPGES-1) or as Dual Inhibitors of mPGES-1 and 5-Lipoxygenase (5-LOX). Journal of Medicinal Chemistry, 52, 4968-4972. >https://doi.org/10.1021/jm900481c
Shahraki, F.N., Momtaz, S., Baeeri, M., Khayatan, D., Lashgari, N., Roudsari, N.M., et al. (2023) Licofelone Attenuates Acetic Acid-Induced Colitis in Rats through Suppression of the Inflammatory Mediators. Inflammation, 46, 1709-1724. >https://doi.org/10.1007/s10753-023-01835-0
Hanna, M.M., Abdelgawad, N.M., Ibrahim, N.A. and Mohammed, A.B. (2011) Synthesis and Antitumor Evaluation of Some Novel Pyrrolizine Derivatives. Medicinal Chemistry Research, 21, 2349-2362. >https://doi.org/10.1007/s00044-011-9761-7
Tavolari, S., Bonafè, M., Marini, M., Ferreri, C., Bartolini, G., Brighenti, E., et al. (2007) Licofelone, a Dual COX/5-LOX Inhibitor, Induces Apoptosis in HCA-7 Colon Cancer Cells through the Mitochondrial Pathway Independently from Its Ability to Affect the Arachidonic Acid Cascade. Carcinogenesis, 29, 371-380. >https://doi.org/10.1093/carcin/bgm265
Mohammed, A., Janakiram, N.B., Li, Q., Choi, C., Zhang, Y., Steele, V.E., et al. (2011) Chemoprevention of Colon and Small Intestinal Tumorigenesis in Apc
min/+Mice by Licofelone, a Novel Dual 5-LOX/COX Inhibitor: Potential Implications for Human Colon Cancer Prevention. Cancer Prevention Research, 4, 2015-2026. >https://doi.org/10.1158/1940-6207.capr-11-0233
Liu, W., Zhou, J., Bensdorf, K., Zhang, H., Liu, H., Wang, Y., et al. (2011) Investigations on Cytotoxicity and Anti-Inflammatory Potency of Licofelone Derivatives. European Journal of Medicinal Chemistry, 46, 907-913. >https://doi.org/10.1016/j.ejmech.2011.01.002
Guo, S., Zhao, Y., Zhao, X., Zhang, S., Xie, L., Kong, W., et al. (2007) Synthesis and Anti‐tumor Activities of Novel Methylthio‐, Sulfinyl‐, and Sulfonyl‐8H‐Thieno[2, 3‐b]Pyrrolizin‐8‐Oximino Derivatives. Archiv der Pharmazie, 340, 416-423. >https://doi.org/10.1002/ardp.200700044
Guo, S. (2008) Synthesis and Biological Evaluation of Novel Tricyclic Oximino Derivatives as Antitumor Agents. Chemical Research in Chinese Universities, 24, 47-53. >https://doi.org/10.1016/s1005-9040(08)60011-2
Perry, C.K. and Lindsley, C.W. (2019) Total Synthesis of Punicagranine. Tetrahedron Letters, 60, Article ID: 150989. >https://doi.org/10.1016/j.tetlet.2019.150989
Robinson, R.S., Dovey, M.C. and Gravestock, D. (2005) Silver‐Catalyzed Hydroamination: Synthesis of N‐Bridgehead Pyrroles, Incorporating a Protection‐Deprotection Strategy for Preparation of Cyclic Secondary Vinylogous Carbamates. European Journal of Organic Chemistry, 2005, 505-511. >https://doi.org/10.1002/ejoc.200400598
Unaleroglu, C. and Yazici, A. (2007) Gadolinium Triflate Catalyzed Alkylation of Pyrroles: Efficient Synthesis of 3-Oxo-2, 3-Dihydro-1H-Pyrrolizine Derivatives. Tetrahedron, 63, 5608-5613. >https://doi.org/10.1016/j.tet.2007.04.018
Deb, I. and Seidel, D. (2010) Retro-claisen Condensation versus Pyrrole Formation in Reactions of Amines and 1, 3-Diketones. Tetrahedron Letters, 51, 2945-2947. >https://doi.org/10.1016/j.tetlet.2010.03.086
Lu, S., Wang, W., Gao, P., Zhang, W. and Tu, Z. (2012) Photoinduced Chlorine Atom-Transfer Cyclization/Photohydrolysis of 3-Acyl-2-Chloro-N-(ω-Phenylalkynyl)pyrroles: A One-Pot Synthesis of Benzoyl-Substituted Fused Pyrroles. Organic&Biomolecular Chemistry, 10, 232-235. >https://doi.org/10.1039/c1ob05954h
Yan, Z.Y., Xiao, Y. and Zhang, L. (2012) Gold-Catalyzed One-Step Construction of 2, 3-Dihydro-1H-Pyrrolizines with an Electron-Withdrawing Group in the 5-Position: A Formal Synthesis of 7-Methoxymitosene. Angewandte Chemie International Edition, 51, 8624-8627.>https://doi.org/10.1055/s-0032-1317356
Nebe, M.M., Kucukdisli, M. and Opatz, T. (2016) 3, 4-Dihydro-2H-Pyrrole-2-Carbonitriles: Useful Intermediates in the Synthesis of Fused Pyrroles and 2, 2’-Bipyrroles. The Journal of Organic Chemistry, 81, 4112-4121. >https://doi.org/10.1021/acs.joc.6b00393
Stark, D.G., Williamson, P., Gayner, E.R., Musolino, S.F., Kerr, R.W.F., Taylor, J.E., et al. (2016) Isothiourea-Catalysed Enantioselective Pyrrolizine Synthesis: Synthetic and Computational Studies. Organic&Biomolecular Chemistry, 14, 8957-8965. >https://doi.org/10.1039/c6ob01557c
Miaskiewicz, S., Gaillard, B., Kern, N., Weibel, J., Pale, P. and Blanc, A. (2016) Gold(i)‐Catalyzed N‐Desulfonylative Amination versus N‐to‐O 1, 5‐sulfonyl Migration: A Versatile Approach to 1‐Azabicycloalkanes. Angewandte Chemie International Edition, 55, 9088-9092. >https://doi.org/10.1002/anie.201604329
Lange, M., Zi, Y. and Vilotijevic, I. (2019) Enantioselective Synthesis of Pyrrolizin-1-Ones via Lewis Base Catalyzed N-Allylation of N-Silyl Pyrrole Latent Nucleophiles. The Journal of Organic Chemistry, 85, 1259-1269. >https://doi.org/10.1021/acs.joc.9b02819
Klipkov, A.A., Sorochinsky, A.E., Tarasenko, K.V., Rusanova, J.A. and Gerus, I.I. (2020) Synthesis of Trifluoromethyl and Trifluoroacetyl Substituted Dihydropyrrolizines and Tetrahydroindolizines. Tetrahedron Letters, 61, Article ID: 151633. >https://doi.org/10.1016/j.tetlet.2020.151633
Wu, X., Xiao, G., Ding, Y., Zhan, Y., Zhao, Y., Chen, R., et al. (2020) Palladium-Catalyzed Intermolecular Polarity-Mismatched Addition of Unactivated Alkyl Radicals to Unactivated Alkenes. ACS Catalysis, 10, 14107-14116. >https://doi.org/10.1021/acscatal.0c04013
Klintworth, R., Morgans, G.L., Scalzullo, S.M., et al. (2021) Silica Gel and Microwave-Promoted Synthesis of Dihydropyrrolizines and Tetrahydroindolizines from Enaminones. Beilstein Journal of Organic Chemistry, 17, 2543-2552.
Scalzullo, S.M., Morgans, G.L., Klintworth, R., de Koning, C.B., Fernandes, M.A., van Otterlo, W.A.L., et al. (2024) Chromenone‐Fused Pyrrolizines and Pyrrolizine Analogues of Lamellarins: Expanding the Lamellarin Family. European Journal of Organic Chemistry, 27, e202301230. >https://doi.org/10.1002/ejoc.202301230
Bae, J., Lee, H., Youn, S., Kwon, S. and Cho, C. (2010) Organocatalytic Asymmetric Synthesis of Chiral Pyrrolizines by Cascade Conjugate Addition-Aldol Reactions. Organic Letters, 12, 4352-4355. >https://doi.org/10.1021/ol101811c
Zheng, Z., Tu, H. and Zhang, L. (2014) One‐pot Synthesis of Fused Pyrroles through a Key Gold‐Catalysis‐Triggered Cascade. Chemistry—A European Journal, 20, 2445-2448. >https://doi.org/10.1002/chem.201304204
Gu, Y., Hu, P., Ni, C. and Tong, X. (2015) Phosphine-catalyzed Addition/Cycloaddition Domino Reactions of Β’-Acetoxy Allenoate: Highly Stereoselective Access to 2-Oxabicyclo[3.3.1]Nonane and Cyclopenta[a]Pyrrolizine. Journal of the American Chemical Society, 137, 6400-6406. >https://doi.org/10.1021/jacs.5b03273
Sugimoto, K., Yamamoto, N., Tominaga, D. and Matsuya, Y. (2015) Three-Component Domino Process for the Pyrrolizine Skeleton via [3 + 2]-Cycloaddition-Enamine Cyclization Triggered by a Gold Catalyst. Organic Letters, 17, 1320-1323. >https://doi.org/10.1021/acs.orglett.5b00320
Zheng, K., Shu, W., Ma, J., Wu, Y. and Wu, A. (2016) Acid-Mediated N-H/α, β-C(sp
3)–h Trifunctionalization of Pyrrolidine: Intermolecular [3 + 2] Cycloaddition for the Construction of 2, 3-Dihydro-1H-Pyrrolizine Derivatives. Organic Letters, 18, 3526-3529. >https://doi.org/10.1021/acs.orglett.6b01369
Shirsat, P.K., Khomane, N.B., Mali, P.R., Maddi, R.R., Nanubolu, J.B. and Meshram, H.M. (2017) Multicomponent Methanolysis Reaction for the Synthesis Pyrrole and Pyrolizine Derivatives via Intermolecular (3 + 2) Cycloaddition. ChemistrySelect, 2, 11218-11222. >https://doi.org/10.1002/slct.201702729
Kallweit, I. and Schneider, C. (2019) Brønsted Acid Catalyzed [6 + 2]-Cycloaddition of 2-Vinylindoles with in Situ Generated 2-Methide-2H-Pyrroles: Direct, Catalytic, and Enantioselective Synthesis of 2, 3-Dihydro-1H-Pyrrolizines. Organic Letters, 21, 519-523. >https://doi.org/10.1021/acs.orglett.8b03833
Kowalska, J., Łukasik, B., Frankowski, S., Sieroń, L. and Albrecht, Ł. (2022) Vinylogous Hydrazone Strategy in Stereoselective Synthesis of 2, 3‐Dihydro‐1H‐Pyrrolizines—An Organocatalytic, Metal‐Free Route to Ketorolac. Advanced Synthesis&Catalysis, 364, 3607-3616. >https://doi.org/10.1002/adsc.202200727
Hao, L., Liu, X., Yi, D., Wang, Y., Yu, X., Ma, Z., et al. (2023) The [3 + 2] Cycloaddition Reaction of N-Substituted Pyrrole-2-Carboxaldehydes with Arylalkenes under Copper Catalysis: Access to Dihydropyrrolizine Skeletons. Organic Letters, 25, 9136-9141. >https://doi.org/10.1021/acs.orglett.3c03558