jocr Journal of Organic Chemistry Research 2330-5231 2330-524X beplay体育官网网页版等您来挑战! 10.12677/jocr.2024.122037 jocr-90926 Articles 化学与材料 表面凹陷的高分子微球研究
Research on Polymer Microspheres with Surface Concavities
敬宏宇 上海理工大学材料与化学学院,上海 01 04 2024 12 02 386 396 7 4 :2024 21 4 :2024 21 6 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 在过去的十多年里,人们对具有表面凹陷的高分子微球的合成越来越感兴趣,主要包括高尔夫球状、酒窝状和表面皱褶状的高分子微球。这种合成一般可分为直接聚合和对预成型高分子微球进行后处理。本文综述了该类微球的合成策略。选取了一些实例来说明表面凹陷的形成机理。并简要讨论了这些凹形高分子微球的应用和未来发展。
Over the past decade or so, there has been increasing interest in the synthesis of polymer particles with surface concavities, which mainly include golf ball-like, dimpled and surface-wrinkled polymer particles. Such syntheses generally can be classified into direct polymerization and post-treatment on preformed polymer particles. This review aims to provide an overview of the synthetic strategies of such particles. Some selected examples are given to present the formation mechanisms of the surface concavities. The applications and future development of these concave polymer particles are also briefly discussed.
高分子微球,表面凹陷,直接聚合,后处理
Polymer Microspheres
Surface Concavities Direct Polymerization Post-Treatment
1. 引言

非球形形状是胶体微球(或胶体粒子)的一种固有的功能特性,其可以在不改变微球化学组分的情况下增强其润湿、粘附和光学性质等。由于表面张力的存在,高分子微球通常情况下其倾向于形成球形以使整个体系的界面自由能最小化,因此制备形状可控的非球形高分子微球相对困难。目前,非球形高分子微球的制备方法主要有种子聚合法、一步聚合法、溶剂蒸发法、力学变形法、微流体法等。所得到的非球形高分子微球的形状种类繁多,例如哑铃状 [1] 、雪人状 [2] 、圆盘状 [3] 等。这些形状主要为凸起状的,而凹陷状的高分子微球则较少报道。这是因为表面凹陷的聚合物微球制备难度更大,一些可以用于表面凸起的高分子微球的制备方法对其不适用 [4] - [8] 。例如,热拉伸填埋于聚合物基体中的球形聚合物微球能得到椭球形微球,而显然不能得到表面凹陷的微球。

根据表面凹陷的具体情形,表面凹陷的聚合物微球可以进一步分为三类:普通凹陷的聚合物微球(表面存在一处凹陷)、高尔夫球状聚合物微球(表面存在多处有规律的凹陷)和表面褶皱的聚合物微球。本文讨论的对象是最常见的普通凹陷的聚合物微球 [5] [9] - [20] 。根据凹陷程度和表述习惯的不同,其在文献中常被称为碗状(bowl-like)粒子、酒窝状(dimpled)粒子、空穴(cavity)粒子、蘑菇帽状(mushroom cap-shaped)粒子、红细胞状(red blood cell-like)粒子等。根据表面凹陷的形成过程,其制备方法可以分为两大类:通过种子聚合或一步聚合直接形成表面凹陷的高分子微球,和对预先形成的纯的球形聚合物微球进行后处理(例如溶剂蒸发法 [5] [9] - [11] [13] [21] - [26] 和模板法 [27] - [51] 等)而产生表面凹陷。本文综述了几种代表性的普通凹陷状高分子微球的制备方法和原理,并简要地讨论了这类微球的应用和未来发展趋势。

2. 种子聚合

种子聚合法是制备表面凹陷的高分子微球的典型方法。具体聚合方法包括种子乳液聚合、种子无皂乳液聚合和种子分散聚合等。种子聚合法具有较强的普适性,能适用于多种聚合物。

2.1. 种子乳液聚合

种子乳液聚合是在聚合反应的初始阶段引入了少量的已形成的聚合物微粒,这些微粒通常称为“种子”。通过种子乳液聚合,可以制备具有不同形貌的高分子微球。荷兰莱顿大学Meester和Kraft提出了一种经种子乳液聚合制备具有可调控的表面组分和形状的聚合物杂化胶体粒子的方法 [17] ,如 图1 所示。该方法首先通过分散聚合制备聚苯乙烯(PS)粒子;然后PS在阻聚剂对苯二酚(HQ)的存在下,与苯乙烯(St)和3-(三甲氧基甲硅基)甲基丙烯酸丙酯) (TPM)溶胀和交联。粒子表面形貌可通过改变HQ浓度和St:TPM体积比来调控:TPM浓度适中时,形成单酒窝胶体;TPM浓度高时,得到具有不同形态的折皱的胶体。形成酒窝状或折皱状胶体粒子的原理在于:苯乙烯和TPM的混合物对PS种子的溶胀导致了核壳结构粒子的形成。当壳层足够厚时,在聚合过程中,核的体积随着密度增加而迅速下降,壳随之发生弯曲或折皱。该方法在制备凹陷状粒子时需要使用硅烷和阻聚剂。

Figure 1. Synthetic methods for preparing colloids with tunable surface roughness and shape. The surface morphology can be adjusted by varying the concentration of HQ and the St:TPM v/v ratio used for swelling linear PS (LPS) particles. The scale bar is 3 μm [17]--图1. 种子乳液聚合法制备表面粗糙度和形状可调的高分子微球示意图。通过改变HQ浓度和用于溶胀线性PS (LPS)颗粒的St:TPM v/v比,可以调整表面形貌。标尺尺寸为3 μm [17]--

在2017年,Wang等人提出了一种通用的乳液界面聚合方法,这种方法通过在水油界面添加特定的锚定分子来制造Janus颗粒 [52] 。与传统的种子乳液聚合相比,这种新方法的聚合活动是从微滴界面的一个确定点开始的。因此,所得到的Janus颗粒在化学成分和表面结构上展示了明显的各向异性。该聚合体系由苯乙烯、DVB、非交联PS种子颗粒(直径约1.08 μm)和作为锚定分子的亲水性丙烯酸(AA)组成的油水(O/W)乳液构成。如 图2 所示,在聚合过程中,聚合物核首先在微滴内部形成,然后移至油水界面。接着,AA单体在水相开始在微滴界面锚定并聚合。由于AA、苯乙烯和DVB在不同方向的优先聚合,形成了具有新月形状的Janus颗粒。后续研究显示,PS微球能够控制Janus颗粒的形状和均匀性,并在聚合过程中调节界面生长,从而主导聚合过程 [53]

Figure 2. Schematic of the PS particles mediated emulsion interfacial polymerization [52]--图2. PS微球介导的乳液界面聚合示意图[52]--

Ma等人利用具有多凹陷结构的非球形颗粒作为种子,在乳液聚合过程中成功制备了各种形状的聚合物颗粒,包括碗状形态 [15] 。这些多凹陷的PS种子颗粒是通过两步分散聚合法制备的,在第二阶段定期添加交联剂,从而在种子颗粒聚合前调控其到达理想的形状。

Tian等人探讨了通过压力辅助的种子乳液聚合方法(如高压溶胀和超声波溶胀聚合),来加速种子溶胀过程。这些方法能够在几分钟内实现溶胀平衡,并形成具有不同大小单孔的凹陷状溶胀颗粒。在聚合过程中,这些溶胀的种子乳液能被用来合成具有可控形状的PGMA/PS斑驳微粒。同时,通过调控溶胀时间和DBP/S比率,可以精确控制微粒的形态演化,这些研究不仅促进了斑驳颗粒的快速和大规模生产,而且降低了生产成本,提升了种子乳液聚合的效率 [54]

2.2. 种子分散聚合

中科院化学所刘冰等经种子分散聚合过程中的相分离而制备了包括碗状粒子在内的具有复杂结构的的聚(苯乙烯–苯乙烯磺酸钠)胶体粒子 [19] 。该方法的关键是引入了亲水的-SO3基团到PS微球,并且-SO3基团的量对最终形貌具有显著影响。

1997年,Okubo等人开发了一种方法,利用DVB和甲苯对PS种子颗粒进行动态溶胀,并通过种子聚合法来制备空心聚合物微粒 [55] 。在转化率较低的情况下,由于壳层的厚度不足以抵抗未聚合的DVB和甲苯快速蒸发产生的压力,结果形成了橄榄球状和类似红血球的聚合物颗粒。进一步的实验中,通过使用DVB、乙烯基联苯和二甲苯溶胀的PS颗粒进行种子聚合,得到了橄榄球形的聚合物微粒 [56]

Saadat等人采用微成型–聚合法制备了非球形聚合物颗粒,其中苯乙烯的聚合是在含有烃类溶胀的聚(甲基丙烯酸2-乙基己酯) (PEHMA)颗粒的情况下进行的。这些PEHMA颗粒既充当种子也充当微模具,聚合后在微模具表面形成PS半壳,移除微模具后形成了碗状的PS颗粒 [57]

最近,Kegel等人研究了通过在聚合过程中延迟添加交联剂(DVB)来制备带有单个凹陷的PS微粒 [58] 。例如,当DVB在聚合开始后1.5小时添加时,观察到形成了平均直径约500纳米的凹陷。他们提出,这种凹陷的形成是由于首先形成了具有线性聚合物核心和交联壳层的核–壳颗粒,随着单体的消耗,溶胀的核心体积缩小,导致弹性交联壳层产生凹陷。通过调节延迟添加交联剂的时间和DVB的浓度,可以精确控制凹陷的大小。

3. 一步聚合法

一步聚合法制备表面凹陷的高分子微球是基于不同乙烯基单体之间的共聚。具体聚合方法包括一步乳液聚合、一步无皂乳液聚合、一步分散聚合等。与种子聚合法相比,一步聚合法操作简便,一步即可完成,但往往依赖于特定配方,所制备的也都是共聚物粒子。以下是本领域代表性工作的介绍。

3.1. 一步乳液聚合

中科院化学所宋延林等通过仅改变乳液聚合过程中交联剂DVB的进料方式而改变相分离的位置,分别制备了单空穴粒子、多空穴粒子和菜花状粒子 [12] 。形成不同的空穴结构主要归因于PDVB位于乳胶粒子表面的单个或多个位置,这导致了在粒子表面不同位置可控的相分离继而导致具有不同空穴结构的粒子的形成。该方法需要使用特定的亲水单体和憎水单体组合,并且需要使用交联剂。

3.2. 一步无皂乳液聚合

香港中文大学Ngai等报道了一种经一步无皂乳液聚合制备单空穴结构的聚(苯乙烯–甲基丙烯酸甲酯)乳胶粒子的方法 [14] 。该方法的关键是在苯乙烯(St)的无皂乳液聚合配方中引入共单体甲基丙烯酸甲酯(MMA)。

3.3. 一步分散聚合

华南理工大学张心亚等报道了使用DVB作为交联剂,乙醇或乙醇/水混合物作为反应介质,经一步分散聚合制备红细胞状的PS粒子 [18] 。这种粒子的形貌受DVB浓度或进料方式和乙醇/水质量比的影响。这些非球形粒子是不均匀的交联网络在相分离过程中不对称收缩所导致的。该方法需要使用交联剂。

Figure 3. SEM and TEM images of Hollow Dimpled Polystyrene Microparticles by Dispersion Polymerization [52]--图3. 一步分散聚合法制备的凹陷状PS空心粒子的SEM (左)和TEM (右)照片[52]--

最近,韩国釜庆大学Kim等提出了一种在乙醇/水混合物中经一步分散聚合制备酒窝状空心PS粒子的方法 [20] 。水溶性引发剂过硫酸铵(APS)在聚合过程中扮演了重要角色。通过改变APS的浓度和聚乙烯基吡咯烷酮(PVP)的用量,可以控制PS的平均粒径和弯曲度。如 图3 所示,粒子增长可以分两个阶段:第一阶段为反应的14小时内,实心粒子变成空心粒子;第二阶段空心结构形成凹陷。反应开始时,单体、稳定剂和引发剂溶解于乙醇/水混合物而形成均相溶液。一旦加热使引发剂分解后,齐聚物自由基产生;当齐聚物增长到一定的临界链长,其与反应混合物变的不相容并吸附稳定剂而形成稳定的粒子;一旦粒子形成,其从连续相吸附单体并被单体溶胀。从这一阶段开始,聚合优先发生在粒子表面,因其表面吸附有水溶性的APS的自由基。相应地,聚合物链随着单体从粒子中心逐渐地迁移到表面而形成凹陷。该方法比较简便,所得到的粒子尺寸也比较均一。

<xref></xref>4. 后处理法

后处理法包括溶剂吸收/释放、溶剂蒸发法、模板法、核–壳粒子后处理等方法与聚合法相比,后处理法更为灵活,其一种方法往往能适用于多种聚合物。缺点是往往需要使用有机溶剂,从而具有一定危害性。以下是本领域代表性工作的介绍。

4.1. 溶剂吸收/释放法

溶剂吸收/释放法由日本神户大学大久保政芳等提出,它是将甲苯溶胀的PS粒子从乙醇–水中的分散液分散到甲醇中。其形成机理如下:由于乙醇–水溶剂与甲醇混溶,PS粒子可以迅速分散于甲醇。对甲苯溶胀的PS粒子来说,由于甲苯也与甲醇混溶,但PS不溶于甲醇,因此甲苯从粒子内部释放和甲醇渗透进入粒子内部同时发生,这导致形成了憎水性的PS外壳,这也导致渗透速率低于释放速率。相应地,当外部压力超出壳的强度,表面形成了凹陷。

4.2. 溶剂蒸发法

溶剂蒸发法是一种常用的后处理方法。该方法通过使含有溶剂的聚合物微球蒸发,从而使微球的形态会发生变化,这通常会导致具有凹陷状形貌的微球的形成。溶剂蒸发法包括基于良好溶剂的溶剂蒸发和基于不良溶剂的溶剂蒸发。

大久保政芳等采用溶剂蒸发法制备了凹陷的PS/PMMA复合粒子 [9] [10] 。在该方法中,先将预先制备的PS和PMMA一起溶于它们共同的良溶剂甲苯,然后将其分散于加有表面活性剂的水溶液,最后将甲苯蒸发。当聚乙烯醇作为表面活性剂时,得到带有单酒窝的PS/PMMA复合粒子。酒窝形状的形成由甲苯蒸发过程中PS和PMMA之间发生相分离所导致。该方法局限于使用特定的聚合物组合。

Figure 4. Schematic diagram illustrating the formation mechanism of dimpled and hemispherical PS particles in the presence of decane droplets in methanol/water medium [11]--图4. 在甲醇/水介质中经癸烷蒸发法制备酒窝状和半球状PS粒子示意图[11]--

此外,大久保政芳等还报道了使用癸烷蒸发法(采用聚合物的不良溶剂癸烷对单一聚合物进行溶胀,然后蒸发掉癸烷)来制备凹陷状高分子微球 [11] 。在该方法中,先对分散在甲醇/水(40/60~80/20, w/w)介质中的PS粒子进行加热(55~70℃,高于PS胶体粒子的玻璃化转变温度)使其吸附癸烷,随后冷却到室温,癸烷挥发后即得到微米级的、单分散的酒窝状或半球形PS粒子。酒窝状和半球状粒子的形成机理如下(见 图4 ):在加热过程中,癸烷被PS粒子所吸附;在冷却过程中,吸附了癸烷的PS粒子相分离成PS和癸烷;最终,通过蒸发从PS/癸烷粒子中除去癸烷,形成了酒窝状和/或半球状粒子。酒窝的大小取决于冷却过程中从PS粒子中分离出去的癸烷相的体积,这可以通过改变加热温度和甲醇含量来确定。这种方法还可适用于其它聚合物和不良溶剂,因此具有较好的应用前景。受到该方法启发,近年来,Zou等采用类似方法制备了表面凹陷的PS-SiO2核壳复合粒子 [5]

Weck等人发现了一种方法,可以使未交联的PS (Nx-PS)微粒(直径为2.4 μm)在非对称球形的凸–凸、平–凸、凹–凸形态之间可逆地转换 [25] 。这些Nx-PS粒子被分散在水与2,6-二甲基吡啶(DMP)的10:1混合物中,并在70℃下加热。加热引起的相分离以及DMP的吸附导致了粒子形态的变化。该实验的关键在于使用DMP,它不仅是PS的良好溶剂,还具有随温度改变而变化的水溶性。

4.3. 模板法

该方法利用具有特定形状和尺寸的模板作为模具,将聚合物溶液或乳液加入到模板中,经过适当的处理后,聚合物在模板表面形成凹陷结构。随后,将模板从聚合物中移除,得到具有表面凹陷的聚合物微球。这种方法可以通过选择不同形状和尺寸的模板来调控微球的形貌和表面结构,模板法通常包括两个步骤:1) 制备具有特定形状(如簇状、哑铃状)的聚合物颗粒或含有硬模板的Janus颗粒;2) 选择性移除模板以获得凹陷结构,一般通过分解或溶解实现。

Zeng等人开发了一种使用功能化的80 nm SiO2粒子的技术,通过乳液聚合方法高效制备SiO2/PS异构二聚体 [36] 。这种技术在特定的单体转化率达成时,能够生成哑铃状的二聚体。这些二聚体中SiO2与PS的连接相对较弱,因此,通过轻微搅拌含有这些哑铃状微球的分散液,可以轻松地将凹陷的PS微球从SiO2表面上分离出来。这一方法不仅效率高,而且便于调控生成物的形状与结构。

Weitz等人利用了一个由锥形毛细管组成的微流控装置,该装置在单个接收毛细管中注入两种不同的油相到水中,成功制备了单分散的新月形颗粒,如 图5 所示 [29] 。这两种油相分别是氟碳和混合了亲水性SiO2粒子的光固化单体。这些SiO2粒子被吸附于水相界面,而不吸附于氟碳油界面。通过紫外光聚合处理和去除氟碳的步骤之后,形成了具有暴露的SiO2粒子的亲水性凸表面和光滑的疏水性凹表面的新月形两亲性颗粒。

Figure 5. Schematic illustration of the microfluidic device comprised <xref ref-type="bibr" rid="hans.90926-29"> [29] </xref>图5. 微流控装置示意图<xref ref-type="bibr" rid="hans.90926-29"> [29] </xref>

在2013年,Korpics等人提出了一种方法,基于双相颗粒制备复杂形状的胶体颗粒 [30] 。这项技术允许独立地、有选择地聚合、液化和溶解两个不同相位。例如,利用油滴作为模板,可以制备出碗形的聚合物颗粒 [49] ,如 图6 所示。这一过程包括四个主要步骤:首先,通过在存在PS微球的情况下,TPM油滴的非均相成核和聚结形成双相颗粒,每个PS微球粘附于一个油滴。接下来,通过使用溶剂对PS微球进行塑化,并利用表面张力使其在液滴模板中变形。然后,通过溶剂的蒸发使PS微球重新固化。最后用酒精洗去TPM油滴,留下碗状的PS微球。值得注意的是,可以制备大量的碗状胶体颗粒。使用1 L规模的反应器和560 nm的PS种子颗粒,可以获得直径为880 nm的碗状颗粒。

Figure 6. Cartoon schematics of basic outline of bowl-shaped polymer particle fabrication: (a) droplets of TPM oil (blue) are nucleated and grown on PS microspheres (red) to serve as a template; (b) an organic solvent is dispersed to plasticize and deform the particles across the droplet surface; (c) the solution is heated to evaporate the solvent, re-solidifying the particles; (d) the entire solution is transferred to an alcohol solution to dissolve and remove the TPM oil phase [49]--图6. 碗状聚合物颗粒制备的基本轮廓示意图:(a) TPM油滴(蓝色)成核并生长在PS微球(红色)上作为模板;(b)分散有机溶剂使颗粒在液滴表面塑化变形;(c)加热溶液使溶剂蒸发,使颗粒重新凝固;(d)将整个溶液转移到酒精溶液中溶解并除去TPM油相[49]--
4.4. 对核壳聚合物复合颗粒的后处理

核–壳聚合物复合颗粒可被认为是制备凹陷状聚合物颗粒的理想前驱体。经过膨胀–溶胀、蒸汽退火等方法适当处理后,核–壳聚合物复合颗粒壳层容易发生凹陷,从而形成凹陷状聚合物颗粒。例如,Stucky等人通过溶胀的方法制备了由碳包覆的凹陷状PS颗粒(PS@C),如 图7 所示。加热诱导的PS溶胀导致核壳颗粒的体积显著增加,随后,冷却诱导的PS去溶胀产生了向内应力。当碳壳具有适当的模量时,PS@C颗粒可能即出现表面凹陷 [59]

Figure 7. Schematic preparation steps of converting a PS nanospheres into the PS@C concave nanoparticle: (1) carbon coating; (2) heating, where PS swelling plastically enlarges the carbon shell; (3) cooling, where deswelling of PS core results in shrinkage [59]--图7. 将PS纳米球转化为凹陷状PS@C颗粒的制备步骤示意图:(1) 碳包覆;(2) 加热,PS溶胀使碳壳层变大;(3) 冷却,PS核去溶胀导致收缩[59]--
5. 总结和展望

胶体微球的外观形状对胶体材料的物理和化学性能非常重要。凹陷状高分子微球是一类特殊的形状各向异性粒子。近年来,这种胶体微球得到广泛研究,并在胶体结晶、自组装、生物医药等领域有着广泛的应用前景。例如,凹陷状聚合物粒子可以通过位置选择性的(site-selective)憎水作用而组装成哑铃状或三聚体。如前所述,其主要制备方法包括聚合法和后处理法。总体而言,聚合法往往与具体的聚合配方相关,环境较为友好;而后处理法更为灵活,但往往需要使用有机溶剂,对环境有一定危害。未来研究可以探索制备更多种类的凹陷状聚合物微球,并探索其在更广泛领域的应用。

References Stuckert, R., Krumova, M. and Wittemann, A. (2022) Cryogenic Transmission Electron Microscopy for Observation of Monomer Protrusions That Emerge during Formation of Dumbbell-Shaped Polymer Colloids. Colloid and Polymer Science, 300, 1413. >https://doi.org/10.1007/s00396-022-05014-9 Saito, N., Nakatsuru, R., Kagari, Y. and Okubo, M. (2007) Formation of “Snowmanlike” Polystyrene/Poly(Methyl Methacrylate)/Toluene Droplets Dispersed in an Aqueous Solution of a Nonionic Surfactant at Thermodynamic Equilibrium. Langmuir, 23, 11506-11512. >https://doi.org/10.1021/la701388w Hu, Y., Ge, J., Zhang, T. and Yin, Y. (2008) A Blown Film Process to Disk-Shaped Polymer Ellipsoids. Advanced Materials, 20, 4599-4602. >https://doi.org/10.1002/adma.200801985 Sacanna, S. and Pine, D.J. (2011) Shape-Anisotropic Colloids: Building Blocks for Complex Assemblies. Current Opinion in Colloid & Interface Science, 16, 96-105. >https://doi.org/10.1016/j.cocis.2011.01.003 Zou, H., Miao, D.D., Sun, H. and Wang, X. (2018) Preparation of Dimpled Polystyrene-Silica Colloidal Nanocomposite Particles. Langmuir, 34, 14302-14308. >https://doi.org/10.1021/acs.langmuir.8b02782 Liang, R., Fang, X., Qiu, B. and Zou, H. (2020) One-Step Synthesis of Golf Ball-Like Thiol-Functionalized Silica Particles. Soft Matter, 16, 9113-9120. >https://doi.org/10.1039/d0sm01214a Lattuada, M. and Dorbic, K. (2022) Polymer Colloids: Moving Beyond Spherical Particles. Chimia, 76, 841-845. >https://doi.org/10.2533/chimia.2022.841 Zou, H. and Lv, Y. (2022) Synthetic Strategies for Polymer Particles with Surface Concavities. Macromolecular Rapid Communications, 43, Article 2270028. >https://doi.org/10.1002/marc.202270028 Okubo, M., Saito, N. and Fujibayashi, T. (2004) Preparation of Polystyrene/Poly(Methyl Methacrylate) Composite Particles Having a Dent. Colloid and Polymer Science, 283, 691-698. >https://doi.org/10.1007/s00396-004-1209-x Saito, N., Kagari, Y. and Okubo, M. (2006) Effect of Colloidal Stabilizer on the Shape of Polystyrene/Poly(Methyl Methacrylate) Composite Particles Prepared in Aqueous Medium by the Solvent Evaporation Method. Langmuir, 22, 9397-9402. >https://doi.org/10.1021/la061298v Tanaka, T., Komatsu, Y., Fujibayashi, T., Minami, H. and Okubo, M. (2009) A Novel Approach for Preparation of Micrometer-Sized, Monodisperse Dimple and Hemispherical Polystyrene Particles. Langmuir, 26, 3848-3853. >https://doi.org/10.1021/la903309t Huang, Y., Wang, J.X., Zhou, J.M., Xu, L., Li, Z.R., Zhang, Y.Z., et al. (2011) Controllable Synthesis of Latex Particles with Multicavity Structures. Macromolecules, 44, 2404-2409. >https://doi.org/10.1021/ma200169w Kim, S.-H., Hollingsworth, A.D., Sacanna, S., Chang, S.-J., Lee, G., Pine, D.J., et al. (2012) Synthesis and Assembly of Colloidal Particles with Sticky Dimples. Journal of the American Chemical Society, 134, 16115-16118. >https://doi.org/10.1021/ja305865w Li, Z.F., Wei, X.L. and Ngai, T. (2012) One-Pot Synthesis of Monodisperse Latex Particles with Single-Cavity Structure. RSC Advances, 2, 1322-1325. >https://doi.org/10.1039/c2ra01209j Cheng, Z.F., Luo, F.H., Zhang, Z.X. and Ma, Y.-Q. (2013) Syntheses and Applications of Concave and Convex Colloids with Precisely Controlled Shapes. Soft Matter, 9, 11392-11397. >https://doi.org/10.1039/c3sm52279b Wang, W.Q., Ren, G.H., Yang, Y.Q., Cai, W.J. and Chen, T. (2014) Synthesis and Properties Study of the Uniform Nonspherical Styrene/Methacrylic Acid Copolymer Latex Particles. Langmuir, 31, 105-109. >https://doi.org/10.1021/la504227q Meester, V. and Kraft, D.J. (2016) Spherical, Dimpled, and Crumpled Hybrid Colloids with Tunable Surface Morphology. Langmuir, 32, 10668-10677. >https://doi.org/10.1021/acs.langmuir.6b02952 Xie, D.L., Ren, X.L., Xie, Y.H., Zhang, X.Y. and Liao, S.J. (2016) Large-Scale Synthesis of Monodisperse Red Blood Cell (RBC)-Like Polymer Particles. ACS Macro Letters, 5, 174-176. >https://doi.org/10.1021/acsmacrolett.5b00852 Luo, Z., Li, Y. and Liu, B. (2017) Colloidal Particles with Complex Microstructures via Phase Separation in Swelled Polymer Microspheres. Chemical Communications, 53, 8649-8652. >https://doi.org/10.1039/c7cc04147k Park, S.H., Kim, J., Lee, W.-E., Byun, D.-J. and Kim, M.H. (2017) One-Step Synthesis of Hollow Dimpled Polystyrene Microparticles by Dispersion Polymerization. Langmuir, 33, 2275-2282. >https://doi.org/10.1021/acs.langmuir.6b04428 Shpaisman, N. and Margel, S. (2008) Anomalous Polymer Particles of Narrow Size Distribution Prepared by Insertion and Evaporation of Fe(Co) 5from Uniform Polystyrene Template Microspheres. Chemistry of Materials, 20, 1719-1724. >https://doi.org/10.1021/cm7032383 Takami, T. and Murakami, Y. (2011) Development of PEG-PLA/PLGA Microparticles for Pulmonary Drug Delivery Prepared by a Novel Emulsification Technique Assisted with Amphiphilic Block Copolymers. Colloids and Surfaces B: Biointerfaces, 87, 433-438. >https://doi.org/10.1016/j.colsurfb.2011.06.004 Crassous, J.J., Mihut, A.M., Månsson, L.K. and Schurtenberger, P. (2015) Anisotropic Responsive Microgels with Tuneable Shape and Interactions. Nanoscale, 7, 15971-15982. >https://doi.org/10.1039/c5nr03827h Chen, Q.B., Gou, S.Q., Huang, Y.M., Zhou, X., Li, Q., Han, M.K., et al. (2018) Facile Fabrication of Bowl-Shaped Microparticles for Oral Curcumin Delivery to Ulcerative Colitis Tissue. Colloids and Surfaces B: Biointerfaces, 169, 92-98. >https://doi.org/10.1016/j.colsurfb.2018.05.012 Liu, M.Z., Zheng, X.L., Dong, F.Y., Ward, M.D. and Weck, M. (2018) Reversible Morphology Switching of Colloidal Particles. Chemistry of Materials, 30, 6903-6907. >https://doi.org/10.1021/acs.chemmater.8b03227 Meijer, J.-M. and Crassous, J.J. (2018) Phase Behavior of Bowl-Shaped Colloids: Order and Dynamics in Plastic Crystals and Glasses. Small, 14, Article 1802049. >https://doi.org/10.1002/smll.201802049 Doshi, N., Zahr, A.S., Bhaskar, S., Lahann, J. and Mitragotri, S. (2009) Red Blood Cell-Mimicking Synthetic Biomaterial Particles. Proceedings of the National Academy of Sciences of the United States of America, 106, 21495-21499. >https://doi.org/10.1073/pnas.0907127106 Yu, B., Wang, D.A., Ye, Q., Zhou, F. and Liu, W. (2009) Robust Polydopamine Nano/Microcapsules and Their Loading and Release Behavior. Chemical Communications, 28, 6789-6791. >https://doi.org/10.1039/b910679k Kim, S.-H., Abbaspourrad, A. and Weitz, D.A. (2011) Amphiphilic Crescent-Moon-Shaped Microparticles Formed by Selective Adsorption of Colloids. Journal of the American Chemical Society, 133, 5516-5524. >https://doi.org/10.1021/ja200139w Sacanna, S., Korpics, M., Rodriguez, K., Colón-Meléndez, L., Kim, S.-H., Pine, D.J., et al. (2013) Shaping Colloids for Self-Assembly. Nature Communications, 4, Article No. 1688. >https://doi.org/10.1038/ncomms2694 Kozlovskaya, V., Alexander, J.F., Wang, Y., Kuncewicz, T., Liu, X., Godin, B., et al. (2014) Internalization of Red Blood Cell-Mimicking Hydrogel Capsules with pH-Triggered Shape Responses. ACS Nano, 8, 5725-5737. >https://doi.org/10.1021/nn500512x Wang, Y., Wang, Y.F., Zheng, X.L., Yi, G.-R., Sacanna, S., Pine, D.J., et al. (2014) Three-Dimensional Lock and Key Colloids. Journal of the American Chemical Society, 136, 6866-6869. >https://doi.org/10.1021/ja502699p Chaduc, I., Parvole, J., Doussineau, T., Antoine, R., Désert, A., Dugas, P., et al. (2015) Towards a One-Step Method for Preparing Silica/Polymer Heterodimers and Dimpled Polymer Particles. Polymer, 70, 118-126. >https://doi.org/10.1016/j.polymer.2015.06.008 Ge, L.-L., Lu, S.-H., Han, J. and Guo, R. (2015) Anisotropic Particles Templated by Janus Emulsion. Chemical Communications, 51, 7432-7434. >https://doi.org/10.1039/c5cc00935a Wang, Y., Li, C.N., He, X.H. and Zhu, J.T. (2015) Preparation and Assembly of Concave Polymer Microparticles. RSC Advances, 5, 36680-36686. >https://doi.org/10.1039/c5ra04110d Zeng, J., Peng, Y.X., Pan, J.M., Gao, H.P., Wu, R.R., Yin, Y.J., et al. (2015) Convenient Synthesis of Micron-Sized Macroporous Polymers with Dents on Their Surfaces and Excellent Adsorption Performance for λ-Cyhalothrin. Chemical Engineering Journal, 266, 1-11. >https://doi.org/10.1016/j.cej.2014.12.049 Guan, B.Y., Yu, L. and Lou, X.W. (2016) Formation of Asymmetric Bowl-Like Mesoporous Particles via Emulsion-Induced Interface Anisotropic Assembly. Journal of the American Chemical Society, 138, 11306-11311. >https://doi.org/10.1021/jacs.6b06558 Li, H.Y., Zhang, W.B., Tong, W.J. and Gao, C.Y. (2016) Enhanced Cellular Uptake of Bowl-Like Microcapsules. ACS Applied Materials & Interfaces, 8, 11210-11214. >https://doi.org/10.1021/acsami.6b02965 Chen, W.-H., Tu, F.Q., Bradley, L.C. and Lee, D. (2017) Shape-Tunable Synthesis of Sub-Micrometer Lens-Shaped Particles via Seeded Emulsion Polymerization. Chemistry of Materials, 29, 2685-2688. >https://doi.org/10.1021/acs.chemmater.7b00494 Longbottom, B.W., Somuncuoğlu, B., Punter, J.J., Longbottom, S. and Bon, S.A.F. (2017) Roughening up Polymer Microspheres and Their Diffusion in a Liquid. Soft Matter, 13, 4285-4293. >https://doi.org/10.1039/c7sm00589j Wang, Y.F., McGinley, J.T. and Crocker, J.C. (2017) Dimpled Polyhedral Colloids Formed by Colloidal Crystal Templating. Langmuir, 33, 3080-3087. >https://doi.org/10.1021/acs.langmuir.7b00202 Kitayama, Y. and Takeuchi, T. (2018) Morphology Control of Shell-Crosslinked Polymer Particles Prepared by Photo-Induced Shell-Selective Crosslinking Approach via Dispersed State Control. Journal of Colloid and Interface Science, 530, 88-97. >https://doi.org/10.1016/j.jcis.2018.06.043 Lei, C.F., Li, Q., Yang, L., Deng, F., Li, J.Y., Ye, Z.H., et al. (2019) Controlled Reversible Buckling of Polydopamine Spherical Microcapsules: Revealing the Hidden Rich Phenomena of Post-Buckling of Spherical Polymeric Shells. Soft Matter, 15, 6504-6517. >https://doi.org/10.1039/c9sm00705a Lin, J.Y., Wang, H.B., Ren, E.H., Song, Q.S., Lan, J.W., Chen, S., et al. (2019) Stomatocyte-Like Hollow Polydopamine Nanoparticles for Rapid Removal of Water-Soluble Dyes from Water. Chemical Communications, 55, 8162-8165. >https://doi.org/10.1039/c9cc04532e Ren, M., Geng, Z., Wang, K., Yang, Y., Tan, Z., Xu, J., et al. (2019) Shape-Anisotropic Diblock Copolymer Particles with Varied Internal Structures. Langmuir, 35, 3461-3469. >https://doi.org/10.1021/acs.langmuir.8b04147 Acter, S., Vidallon, M.L.P., Crawford, S., Tabor, R.F. and Teo, B.M. (2020) Efficient Cellular Internalization and Transport of Bowl-Shaped Polydopamine Particles. Particle & Particle Systems Characterization, 37, Article 2000166. >https://doi.org/10.1002/ppsc.202000166 Hamilton, H.S.C. and Bradley, L.C. (2020) Probing the Morphology Evolution of Chemically Anisotropic Colloids Prepared by Homopolymerization-and Copolymerization-Induced Phase Separation. Polymer Chemistry, 11, 230-235. >https://doi.org/10.1039/c9py01166h Acter, S., Vidallon, M.L.P., Crawford, S., Tabor, R.F. and Teo, B.M. (2021) Bowl-Shaped Mesoporous Polydopamine Nanoparticles for Size-Dependent Endocytosis into HeLa Cells. ACS Applied Nano Materials, 4, 9536-9546. >https://doi.org/10.1021/acsanm.1c01897 Edmond, K.V., Jacobson, T.W.P., Oh, J.S., Yi, G., Hollingsworth, A.D., Sacanna, S., et al. (2021) Large-Scale Synthesis of Colloidal Bowl-Shaped Particles. Soft Matter, 17, 6176-6181. >https://doi.org/10.1039/d0sm00793e Liu, X.H., Moradi, M.-A., Bus, T., Heuts, J.P.A., Debije, M.G. and Schenning, A.P.H.J. (2021) Monodisperse Liquid Crystalline Polymer Shells with Programmable Alignment and Shape Prepared by Seeded Dispersion Polymerization. Macromolecules, 54, 6052-6060. >https://doi.org/10.1021/acs.macromol.1c00884 Sun, C.-H., Septani, C.M. and Sun, Y.-S. (2021) Direct Access to Bowl-Like Nanostructures with Block Copolymer Anisotropic Truncated Microspheres. Langmuir, 37, 636-645. >https://doi.org/10.1021/acs.langmuir.0c02298 Fan, J.-B., Liu, H., Song, Y.Y., Luo, Z., Lu, Z.Y. and Wang, S.T. (2018) Janus Particles Synthesis by Emulsion Interfacial Polymerization: Polystyrene as Seed or Beyond? Macromolecules, 51, 1591-1597. >https://doi.org/10.1021/acs.macromol.7b02304 Sun, H.H., Lin, S.H., Ng, F.T.T., Mitra, S.K. and Pan, Q.M. (2021) Synthesis of Shape-Controllable Anisotropic Microparticles and “Walnut-Like” Microparticles via Emulsion Interfacial Polymerization. Langmuir, 37, 6007-6015. >https://doi.org/10.1021/acs.langmuir.1c00589 Tian, L., Li, X., Zhao, P.P., Ali, Z. and Zhang, Q.Y. (2016) Impressed Pressure-Facilitated Seeded Emulsion Polymerization: Design of Fast Swelling Strategies for Massive Fabrication of Patchy Microparticles. Polymer Chemistry, 7, 7078-7085. >https://doi.org/10.1039/c6py01778a Hayashi, K., Yamada, S., Hayashi, H., Sakamoto, W. and Yogo, T. (2018) Red Blood Cell-Like Particles with the Ability to Avoid Lung and Spleen Accumulation for the Treatment of Liver Fibrosis. Biomaterials, 156, 45-55. >https://doi.org/10.1016/j.biomaterials.2017.11.031 Okubo, M., Minami, H. and Morikawa, K. (2001) Production of Micron-Sized, Monodisperse, Transformable Rugby-Ball-Like-Shaped Polymer Particles. Colloid & Polymer Science, 279, 931-935. >https://doi.org/10.1007/s003960100543 Saadat, Y., Hosseinzadeh, S., Eslami, H. and Afshar-Taromi, F. (2012) Preparation of Micron-Sized, Monodisperse Polymeric Nonspherical Particles with Tunable Shapes by Micromolding-Polymerization. Colloid and Polymer Science, 290, 1333-1339. >https://doi.org/10.1007/s00396-012-2712-0 Guo, Y., Van Ravensteijn, B.G.P. and Kegel, W.K. (2019) Dimple Colloids with Tunable Cavity Size and Surface Functionalities. Macromolecules, 52, 4287-4294. >https://doi.org/10.1021/acs.macromol.9b00406 Liu, D., Peng, X.X., Wu, B.H., Zheng, X.Y., Chuong, T.T., Li, J.L., et al. (2015) Uniform Concave Polystyrene-Carbon Core-Shell Nanospheres by a Swelling Induced Buckling Process. Journal of the American Chemical Society, 137, 9772-9775. >https://doi.org/10.1021/jacs.5b05027
Baidu
map