acm Advances in Clinical Medicine 2161-8712 2161-8720 beplay体育官网网页版等您来挑战! 10.12677/acm.2024.1461963 acm-90788 Articles 医药卫生 非重症肺挫伤患者预后危险因素分析
Analysis of Prognostic Risk Factors in Patients with Nonsevere Pulmonary Contusion
何俊杰 陈斯昭 廖云海 肖章武 福建中医药大学附属第二人民医院,急诊科,福建 福州 06 06 2024 14 06 1669 1677 28 5 :2024 23 5 :2024 23 6 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 目的:探究预防性抗生素使用对胸部钝挫伤后非重症肺挫伤患者的疗效,分析该类伤患发生肺部感染的危险因素。方法:纳入2022年9月至2023年5月在福建中医药大学附属第二人民医院急诊科就诊的胸部钝挫伤后非重症肺挫伤患者60例,按照随机数表法分为研究组(30例)和对照组(30例),对照组予镇痛等常规治疗,研究组在常规治疗的同时加予预防性抗生素治疗,记录两组的肺部感染情况。再将所有纳入患者以是否发生肺部感染分为感染组和未感染组,对预后的相关危险因素进行单因素及多因素分析。结果:研究组剔除2例,对照组剔除1例,均为自愿退出。两组基线资料比较均无统计学差异(P > 0.05),肺部感染发生率亦无统计学差异(P > 0.05)。多因素分析表明吸烟史(OR = 41.225, P < 0.01)、肋骨骨折根数(OR = 1.623, P < 0.05)是影响肺部感染的独立危险因素。结论:抗生素的预防性用药并不能减少非重症肺挫伤患者肺部感染的发生,吸烟史及肋骨骨折根数是发生肺部感染的独立危险因素。
Objective: To explore the efficacy of prophylactic antibiotics in patients with nonsevere pulmonary contusion after blunt chest trauma and analyze the risk factors for pulmonary infection in patients with such injuries. Methods: 60 patients with nonsevere pulmonary contusion after blunt chest trauma who visited the emergency department of the Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine from September 2022 to May 2023 were included. They were randomized into two groups. The both group received conventional treatment such as analgesia, and the intervention group added antibiotic prophylaxis at the same time. The pulmonary infection of the two groups were recorded. Then all included patients were divided into infection group and non-infection group based on whether they had pulmonary infection. Monofactor analysis and multivariate analysis were performed on the relevant risk factors for prognosis. Results: There was no statistical difference in the baseline data between intervention group and control group (P > 0.05), and there was also no statistical difference in the incidence of pulmonary infection between two groups group (P > 0.05). Multivariate analysis showed that smoking history (OR = 41.225, P < 0.01) and number of rib fractures (OR = 1.623, P < 0.05) were independent risk factors for pulmonary infection. Conclusions: Antibiotic prophylaxis cannot reduce the occurrence of pulmonary infection in patients with nonsevere pulmonary contusion. Smoking history and the number of rib fractures are independent risk factors for the occurrence of pulmonary infection in patients with such injuries.
肺挫伤,肺部感染,危险因素,抗生素
Lung Injury
Pneumonia Risk Factors Antibiotic Prophylaxis
1. 引言

胸部外伤在急诊临床工作中十分常见,占全部创伤病例的15%,约60%的多发伤患者合并有胸部创伤 [1] 。常见的胸部创伤包括肺、肋骨、胸骨的损伤,其中肺损伤可分为肺挫伤、肺撕裂伤、气管支气管损伤等 [2] 。肺挫伤通常是由于移动中的胸部撞击到固定物时发生剧烈减速导致的 [3] ,是胸部钝挫伤中最常见的损伤,可见于17%~75%的病例 [1] 。目前对肺挫伤的研究大多围绕重症患者 [4] - [6] ,对非重症患者的关注少,但在急诊日常工作中此类患者绝非少数,可占48%~65% [7] [8] 。故本研究选择胸部钝挫伤后非重症的肺挫伤患者为研究对象,旨在研究干预措施的有效性及预后危险因素。

2. 资料与方法 2.1. 临床资料

纳入于2022年9月1日至2023年5月31日在福建中医药大学附属第二人民医院急诊科就诊的胸部钝挫伤后肺挫伤患者60例。纳入标准:1) 经胸部CT等检查,临床确诊为肺挫伤;2) 根据简明损伤定级标准(Abbreviated Injury Scale, AIS) 2005版进行评估 [9] ,损伤严重度评分(Injury Severity Score, ISS) < 16分;3) 年龄大于18岁;4) 患者知情自愿参加,并已经签署知情同意书。排除标准:1) 合并重型颅脑外伤、胸腹部联合伤、腹腔大出血或开放性损伤、心脏、大血管或食道损伤的患者;2) 合并恶性肿瘤的患者;3) 孕妇及哺乳期妇女;4) 有相关药物过敏史。病例入组后剔除标准包括:1) 入组后自愿退出或中断试验;2) 因病情不宜继续原方案治疗;3) 出现严重不良事件;4) 病例资料不完整或失访。本研究已通过我院伦理委员会审批。

2.2. 研究方法

按照随机数表法将入组患者分为研究组和对照组各30例。所有患者均予完善胸部CT检查。按照AIS 2005版 [9] 对各部位损伤评分并计算ISS分值。根据人民卫生出版社第九版《外科学》“肺损伤”治疗原则 [10] ,两组患者都即时处理合并伤,予以必要的镇痛,发生肋骨骨折行胸带固定,必要时手术干预。因纳入皆为非重症患者,同时考虑到肾上腺皮质激素的疗效及风险争议 [11] [12] ,故本研究中两组均不使用该类药物。研究组予以预防性抗生素治疗,首选头孢类抗生素,若既往有头孢过敏史,则选择左氧氟沙星,疗程为2天。高龄患者或肝肾功能不全者,依据说明书调整用药情况。对照组则不予抗生素。预后结局以肺部感染作为观察指标评估预防性抗生素治疗的有效性。

之后,再将所有纳入患者重新以是否发生肺部感染分为感染组和未感染组,通过研究过程中收集的临床资料行单因素及多因素分析,筛选出影响预后的危险因素。

2.3. 观察指标

收集所有患者的临床资料,包括性别、年龄、就诊距受伤时间、高血压病、糖尿病、心脏病、脑病史、吸烟史、伤因、去向、损伤严重度评分、肋骨骨折、骨折根数、骨折是否移位、手术干预情况、肺部感染发生情况、症状缓解时间情况。

因为肺挫伤的影像学上已存在改变,所以在临床工作中,我们若发现患者出现了以下情况,即诊断为肺部感染:1) 出现发热,且体温 > 38.5℃;2) 原有的呼吸道症状加重;3) 血常规提示白细胞计数≥10 × 109/L或<4 × 109/L [6]

2.4. 随访

门诊病例以首次就诊时间为起始、留观或住院病例以出院时间为起始,第一个月每周随访1次,之后每月随访1次。

2.5. 统计分析

采用SPSS 25.0统计软件进行数据处理。符合正态分布的计量资料以均数 ± 标准差( x ¯ ± s )表示,组间比较采用t检验;不服从正态分布的计量资料以中位数(四分位间距)表示,组间比较采用非参数秩和检验;计数资料以频数与构成比表示,组间比较采用χ2检验。采用χ2检验或Fisher确切概率法行单因素分析,单因素分析有统计学差异的纳入多因素分析,多因素分析采用二元Logistic回归法。P < 0.05表示差异具有统计学意义。

3. 结果 3.1. 研究组与对照组基线资料及疗效比较

研究组30例中剔除2例,均为入组后自愿退出。对照组30例中剔除1例,为自愿退出。故最后研究组28例,对照组29例。两组在基线资料的比较上均无统计学差异(P > 0.05,见 表1 )。在创伤后肺部感染发生率、临床症状缓解时间方面,预防性抗生素治疗的研究组与未经预防性抗生素治疗的对照组间差异无统计学意义(P > 0.05,见 表2 )。

3.2. 发生肺部感染相关危险因素的单因素分析

依据肺部感染发生情况将57例患者分为感染组(12例),未感染组(45例),单因素分析提示,年龄、高血压、糖尿病、吸烟史、肋骨骨折根数是影响非重症肺挫伤患者发生肺部感染的相关因素,其他观察指标在两组间的差异无统计学意义(见 表3 )。

<xref></xref>Table 1. Baseline and clinical characteristics of the patients in the two groupsTable 1. Baseline and clinical characteristics of the patients in the two groups 表1. 研究组与对照组基线资料比较

项目

研究组(n = 28)

对照组(n = 29)

P

性别

0.851

19 (67.9%)

19 (65.5%)

9 (32.1%)

10 (34.5%)

年龄(岁)

53.5 (37.75, 65.75)

57 (49, 68)

0.371

就诊距受伤时间(小时)

2 (1, 7.75)

3 (1, 42)

0.376

高血压

5 (17.9%)

7 (24.1%)

0.561

糖尿病

3 (10.7%)

5 (17.2%)

0.706

心脏病

0 (0%)

3 (10.3%)

0.237

脑病史

1 (3.6%)

3 (10.3%)

0.611

吸烟史

11 (39.3%)

11 (37.9%)

0.916

伤因

0.800

车祸

12 (42.9%)

16 (55.2%)

撞击

6 (21.4%)

6 (20.7%)

摔伤

7 (25.0%)

6 (20.7%)

高坠伤

2 (7.1%)

1 (3.4%)

殴打

1 (3.6%)

0 (0%)

去向

0.896

门诊

14 (50.0%)

15 (51.7%)

留观或住院

14 (50.0%)

14 (48.3%)

ISS分值

9.5 (9, 12)

9 (9, 10)

0.201

肋骨骨折

18 (64.3%)

21 (72.4%)

0.509

骨折根数

1 (0, 2.75)

2 (0, 3.5)

0.334

骨折是否移位

9 (32.1%)

7 (24.1%)

0.501

手术处理

1 (3.6%)

0 (0%)

0.491

<xref></xref>Table 2. Clinical efficacy of the patients in the two groupsTable 2. Clinical efficacy of the patients in the two groups 表2. 研究组与对照组疗效比较

项目

研究组(n = 28)

对照组(n = 29)

P

发生肺部感染

6 (21.4%)

6 (20.7%)

0.945

临床症状缓解时间(天)

8 (3, 14)

10 (5, 14)

0.459

<xref></xref>Table 3. Univariate analysis of lung infection in patients with non-severe pulmonary contusionTable 3. Univariate analysis of lung infection in patients with non-severe pulmonary contusion 表3. 非重症肺挫伤患者发生肺部感染单因素分析

项目

感染(n = 12)

未感染(n = 45)

P

性别

0.301

10 (83.3%)

28 (62.2%)

2 (16.7%)

17 (37.8%)

年龄(岁)

67 (49.5, 78)

54 (41.5, 60.5)

0.037

就诊距受伤时间(小时)

4 (2, 21)

2 (1, 23.5)

0.177

高血压

6 (50.0%)

6 (13.3%)

0.012

糖尿病

5 (41.7%)

3 (6.7%)

0.007

心脏病

1 (8.3%)

2 (4.4%)

0.515

脑病史

1 (8.3%)

3 (6.7%)

1

吸烟史

8 (66.7%)

14 (31.1%)

0.043

伤因

0.296

车祸

4 (33.3%)

24 (53.3%)

撞击

3 (25.0%)

9 (20.0%)

摔伤

3 (25.0%)

10 (22.2%)

高坠伤

2 (16.7%)

1 (2.2%)

殴打

0 (0%)

1 (2.2%)

ISS分值

9.5 (9, 12.25)

9 (9, 11)

0.367

肋骨骨折

11 (91.7%)

28 (62.2%)

0.080

骨折根数

3 (1.25, 6)

1 (0, 2)

0.009

骨折是否移位

5 (41.7%)

11 (24.4%)

0.287

手术处理

1 (8.3%)

0 (0%)

0.211

预防性抗生素

6 (50.0%)

22 (48.9%)

0.945

3.3. 发生肺部感染相关危险因素的多因素分析

以发生肺部感染为因变量,单因素分析中P < 0.05的变量为自变量,行二分类Logistic回归分析,结果提示吸烟史、肋骨骨折根数是影响预后的独立危险因素(见 表4 )。

<xref></xref>Table 4. Multivariate analysis of risk factors for lung infection in patients with non-severe pulmonary contusionTable 4. Multivariate analysis of risk factors for lung infection in patients with non-severe pulmonary contusion 表4. 非重症肺挫伤患者发生肺部感染的多因素Logistic回归分析

项目

B

OR

95%CI

P

年龄

0.083

1.086

0.986~1.197

0.094

高血压

0.674

1.962

0.207~18.614

0.557

糖尿病

2.259

9.573

0.486~188.405

0.137

吸烟史

3.719

41.225

2.678~634.721

0.008

骨折根数

0.484

1.623

1.054~2.499

0.028

4. 讨论

肺挫伤是由于胸部外伤引起的肺实质或间质受损,使肺泡内血液积聚或肺间质水肿,导致肺组织的生理结构和功能改变 [13] ,包括肺内气体交换减少、肺循环阻力增加、肺顺应性降低以及机体免疫功能抑制 [11] 。肺挫伤后炎性反应及免疫调节失控,肺泡巨噬细胞等免疫细胞激活并释放炎症因子,导致肺部损伤加重,免疫功能受到破坏,容易继发感染,甚至发生急性呼吸窘迫综合征(ARDS)等严重并发症 [14] 。现代社会随着城市发展和工业化进程,以交通事故为首的各类创伤病例数量激增 [15] ,除了病情严重、情况复杂的创伤患者,其中超过50%的病例为非重症患者 [16] - [18] ,占了极大比例。但即便是轻症病例有时候也不一定都能获得良好的预后,这点在颅脑创伤患者中已得到证实 [19] [20] 。此外,伤患的年龄、性别、基础疾病、治疗方案等诸多因素皆有可能影响预后 [21] [22] 。再者,就肺挫伤而言,该病本身就是呼吸系统并发症的危险因素 [23] 。因此,探索能预测非重症肺挫伤患者发生肺部感染的危险因素,关注病情可能进展的高危患者,以期能早发现、早诊断、早治疗改善患者预后,是本研究的重点。

本研究中57例肺挫伤患者的肺部感染发生率为21.1% (12例),研究组与对照组基本相当,在现有的文献报道中,肺挫伤后肺炎发生率为21%~45.5%不等 [24] - [26] ,且因创伤的严重程度不同而预后差异大。对于可能的感染,就接诊医师角度而言,如何选择合理的干预措施是最为关键的。当前对该病的治疗措施主要包括呼吸支持、液体复苏、疼痛控制、并发症处理、抗生素和激素应用等 [13] [27] 。但对于非重症患者,疼痛控制和抗生素使用是仅剩的可能选项,控制疼痛的必要性在此无需多言,但对于抗生素治疗却争议极大。D. Dante Yeh等强烈建议肺挫伤患者不要使用预防性抗生素 [28] ,而Alvaro Sanabria的meta-分析则提示胸部外伤患者预防性使用抗生素可降低脓胸和肺炎的发生 [29] 。另一项观察性研究中,则发现危重肺挫伤患者持续48小时以上的经验性抗生素治疗与较低的院内肺炎发生率相关 [30] 。故本研究首先评估预防性抗生素应用的有效性,结果显示在研究组与对照组基线水平无统计学差异的情况下,该干预并不能使患者在肺部感染发生率、临床症状缓解时间方面获益。其次,在对发生肺部感染的相关危险因素分析中,也未提示预防性抗生素用药与其相关。以上结果也与近期全球外科感染联盟(GAIS)发布的指南观点相印证,指南提及对于遭受胸部钝挫伤的患者,不建议使用预防性抗生素(中等推荐,中等质量证据) [31] 。但需要注意的是,本研究中行外科手术干预的仅1例患者,手术为胸腔镜下肋骨骨折内固定,根据指南的建议,对接受手术探查(开胸或胸腔镜检查)的钝性胸部创伤病例需预防性使用抗生素(中等推荐,中等质量证据) [31]

本研究中还表明,非重症肺挫伤患者发生肺部感染的危险因素为吸烟史、肋骨骨折根数。Carolyn S. Calfee的研究显示,主动吸烟与中至重度被动吸烟是严重钝性创伤后发生急性肺损伤的独立危险因素 [32] 。在动物实验中,Katja Wagner等人也已发现,香烟烟雾暴露下的小鼠模型肺部炎症和亚硝化应激加剧,在胸部钝性损伤后出现了肺部气体交换障碍以及更明显的组织学损伤,最终导致细胞凋亡和损伤严重程度增加 [33] 。而且,当前研究已经表明吸烟会增加呼吸道感染性疾病的风险,并以剂量依赖性的方式显著增加感染的发生率,导致不良的预后 [34] - [37] 。另外,关于肋骨骨折则是讨论胸部外伤所不可避免的一个问题,它是胸部外伤中最常见的病理改变,占比达35%~40% [38] ,损伤好发于撞击部位或肋骨最薄弱的后外侧弯 [39] 。需要强调的是,并非所有的肋骨骨折都提示着患者病情严重,还应考虑到肋骨骨折的根数,因为数目的差异常与创伤中受到的外力强度有关。通常胸部外伤的严重程度与骨折的肋骨数量成正比 [39] ,且数量越多提示预后越差 [40] - [44] 。本研究中,随着伤患肋骨骨折数的增加,发生肺部感染的风险亦不断增加(OR = 1.623, 95%CI: 1.054~2.499)。Serife Tuba Liman认为存在两处以上肋骨骨折即为严重损伤的标志 [40] 。Kazunori Fukushima的研究显示超过3.5根的肋骨骨折与死亡率、创伤严重程度、并发症和肺损伤的风险增加显著相关 [44] 。在另一项系统评价中,有3处或以上的肋骨骨折、以及年龄 ≥ 65岁、基础疾病、伤后肺炎发生是胸部钝性伤患者死亡的危险因素是 [42] 。Nikita O Shulzhenko在老年患者中的研究,则提示至少5处肋骨骨折是预后不佳的重要预测因素 [43]

综上所述,对于胸部钝挫伤后ISS < 16分的非重症肺挫伤患者,抗生素的预防性用药并不能减少肺部感染的发生,故不推荐无指征用药,以避免滥用抗生素。吸烟史及肋骨骨折根数是该类伤患创伤后发生肺部感染的独立危险因素,接诊医师应高度重视,密切随访,对伤情发展做出准确判断。

基金项目

福建中医药大学校管课题临床专项资助(项目编号:XB2022024)。

NOTES

*通讯作者。

References Dogrul, B.N., Kiliccalan, I., Asci, E.S., et al. (2020) Blunt Trauma Related Chest Wall and Pulmonary Injuries: An Overview. Chinese Journal of Traumatology, 23, 125-138. >https://doi.org/10.1016/j.cjtee.2020.04.003 汪路明, 徐金明, 刘佳聪, 等. 肋骨胸骨肺部创伤诊治专家共识(2022版) [J]. 中国胸心血管外科临床杂志, 2023, 30(1): 1-9. Yamamoto, L., Schroeder, C., Morley, D., et al. (2005) Thoracic Trauma: The Deadly Dozen. Critical Care Nursing Quarterly, 28, 22-40. >https://doi.org/10.1097/00002727-200501000-00004 Jin, H., Tang, L.Q., Pan, Z.G., et al. (2014) Ten-Year Retrospective Analysis of Multiple Trauma Complicated by Pulmonary Contusion. Military Medical Research, 1, Article No. 7. >https://doi.org/10.1186/2054-9369-1-7 Alisha, C., Gajanan, G. and Jyothi, H. (2015) Risk Factors Affecting the Prognosis in Patients with Pulmonary Contusion Following Chest Trauma. Journal of Clinical and Diagnostic Research, 9, 17-19. >https://doi.org/10.7860/JCDR/2015/13285.6375 Wang, L., Zhao, Y., Wu, W., et al. (2023) Development and Validation of a Pulmonary Complications Prediction Model Based on the Yang’s Index. Journal of Thoracic Disease, 15, 2213-2223. >https://doi.org/10.21037/jtd-23-378 Miller, P.R., Croce, M.A., Bee, T.K., et al. (2001) ARDS after Pulmonary Contusion: Accurate Measurement of Contusion Volume Identifies High-Risk Patients. The Journal of Trauma: Injury, Infection, and Critical Care, 51, 223-230. >https://doi.org/10.1097/00005373-200108000-00003 Zingg, S.W., Gomaa, D., Blakeman, T.C., et al. (2022) Oxygenation and Respiratory System Compliance Associated with Pulmonary Contusion. Respiratory Care, 67, 1100-1108. >https://doi.org/10.4187/respcare.09913 美国机动车医学促进会. 简明损伤定级标准2005 [M]. 第2版. 重庆: 重庆出版社, 2005. 陈孝平, 汪建平, 赵继宗. 外科学[M]. 第9版. 北京: 人民卫生出版社, 2018. Simon, B., Ebert, J., Bokhari, F., et al. (2012) Management of Pulmonary Contusion and Flail Chest: An Eastern Association for the Surgery of Trauma Practice Management Guideline. Journal of Trauma and Acute Care Surgery, 73, S351-S361. >https://doi.org/10.1097/TA.0b013e31827019fd Mokra, D., Mikolka, P., Kosutova, P., et al. (2019) Corticosteroids in Acute Lung Injury: The Dilemma Continues. International Journal of Molecular Sciences, 2019, Article 4765. >https://doi.org/10.3390/ijms20194765 Rendeki, S. and Molnár, T.F. (2019) Pulmonary Contusion. Journal of Thoracic Disease, 11, S141-S151. >https://doi.org/10.21037/jtd.2018.11.53 刘克强, 刘吉福. 肺挫伤对机体免疫功能的影响[J]. 中国医师进修杂志, 2009, 32(8): 70-72. 陈逸凡, 刘中砥, 张鹏, 等. 严重创伤患者损伤严重度评分的一致性[J]. 北京大学学报(医学版), 2024, 56(1): 157-160. Masoumi, K., Forouzan, A., Barzegari, H., et al. (2016) Effective Factors in Severity of Traffic Accident-Related Traumas; an Epidemiologic Study Based on the Haddon Matrix. Emergency, 4, 78-82. Roy, N., Veetil, D.K., Khajanchi, M.U., et al. (2017) Learning from 2523 Trauma Deaths in India-Opportunities to Prevent In-Hospital Deaths. BMC Health Services Research, 17, Article No. 142. >https://doi.org/10.1186/s12913-017-2085-7 Komori, A., Iriyama, H., Kainoh, T., et al. (2021) The Impact of Infection Complications after Trauma Differs According to Trauma Severity. Scientific Reports, 11, Article No. 13803. >https://doi.org/10.1038/s41598-021-93314-5 Madhok, D.Y., Rodriguez, R.M., Barber, J., et al. (2022) Outcomes in Patients with Mild Traumatic Brain Injury without Acute Intracranial Traumatic Injury. JAMA Network Open, 5, e2223245. >https://doi.org/10.1001/jamanetworkopen.2022.23245 Nelson, L.D., Temkin, N.R., Dikmen, S., et al. (2019) Recovery after Mild Traumatic Brain Injury in Patients Presenting to US Level I Trauma Centers: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Study. JAMA Neurology, 76, 1049-1059. >https://doi.org/10.1001/jamaneurol.2019.1313 Coccolini, F., Rausa, E., Montori, G., et al. (2017) Risk Factors for Infections in Trauma Patients. Current Trauma Reports, 3, 285-291. >https://doi.org/10.1007/s40719-017-0094-y de Munter, L., Polinder, S., Havermans, R.J.M., et al. (2021) Prognostic Factors for Recovery of Health Status after Injury: A Prospective Multicentre Cohort Study. BMJ Open, 11, e038707. >https://doi.org/10.1136/bmjopen-2020-038707 Lee, N.H., Kim, S.H., Seo, S.H., et al. (2023) Prediction of Respiratory Complications by Quantifying Lung Contusion Volume Using Chest Computed Tomography in Patients with Chest Trauma. Scientific Reports, 13, Article 6387. >https://doi.org/10.1038/s41598-023-33275-z Landeen, C. and Smith, H.L. (2014) Examination of Pneumonia Risks and Risk Levels in Trauma Patients with Pulmonary Contusion. Journal of Trauma Nursing, 21, 41-49. >https://doi.org/10.1097/JTN.0000000000000029 Dhar, S.M., Breite, M.D., Barnes, S.L., et al. (2018) Pulmonary Contusion in Mechanically Ventilated Subjects after Severe Trauma. Respiratory Care, 63, 950-954. >https://doi.org/10.4187/respcare.05952 Park, H.O., Kang, D.H., Moon, S.H., et al. (2017) Risk Factors for Pneumonia in Ventilated Trauma Patients with Multiple Rib Fractures. Korean Journal of Thoracic and Cardiovascular Surgery, 50, 346-354. >https://doi.org/10.5090/kjtcs.2017.50.5.346 高二击, 李扬, 郭翔, 等. 肺挫伤的诊断与治疗进展[J]. 中华胸部外科电子杂志, 2019, 6(1): 28-32. Yeh, D.D. and Lee, J. (2016) 76-Trauma and Blast Injuries. In: Broaddus, V.C., Ernst, J.D., Mason, R.J., et al., Eds., Murray and Nadel’s Textbook of Respiratory Medicine, Elsevier. >https://doi.org/10.1016/B978-1-4557-3383-5.00076-2 Sanabria, A., Valdivieso, E., Gomez, G., et al. (2006) Prophylactic Antibiotics in Chest Trauma: A Meta-Analysis of High-Quality Studies. World Journal of Surgery, 30, 1843-1847. >https://doi.org/10.1007/s00268-005-0672-y Bassi, E., Merighi, C.T., Tomizuka, C.I., et al. (2023) Association of Antimicrobial Use and Incidence of Hospital-Acquired Pneumonia in Critically Ill Trauma Patients with Pulmonary Contusion: An Observational Study. Brazilian Journal of Anesthesiology, 74, Article 744454. >https://doi.org/10.1016/j.bjane.2023.07.011 Coccolini, F., Sartelli, M., Sawyer, R., et al. (2024) Antibiotic Prophylaxis in Trauma: Global Alliance for Infection in Surgery, Surgical Infection Society Europe, World Surgical Infection Society, American Association for the Surgery of Trauma, and World Society of Emergency Surgery Guidelines. Journal of Trauma and Acute Care Surgery, 96, 674-682. >https://doi.org/10.1097/TA.0000000000004233 Calfee, C.S., Matthay, M.A., Eisner, M.D., et al. (2011) Active and Passive Cigarette Smoking and Acute Lung Injury after Severe Blunt Trauma. American Journal of Respiratory and Critical Care Medicine, 183, 1660-1665. >https://doi.org/10.1164/rccm.201011-1802OC Wagner, K., Gröger, M., McCook, O., et al. (2015) Blunt Chest Trauma in Mice after Cigarette Smoke-Exposure: Effects of Mechanical Ventilation with 100% O 2. PLOS ONE, 10, e0132810. >https://doi.org/10.1371/journal.pone.0132810 Jiang, C., Chen, Q. and Xie, M. (2020) Smoking Increases the Risk of Infectious Diseases: A Narrative Review. Tobacco Induced Diseases, 18, Article 60. >https://doi.org/10.18332/tid/123845 Gotts, J.E., Chun, L., Abbott, J., et al. (2018) Cigarette Smoke Exposure Worsens Acute Lung Injury in Antibiotic-Treated Bacterial Pneumonia in Mice. American Journal of Physiology-Lung Cellular and Molecular Physiology, 315, L25-L40. >https://doi.org/10.1152/ajplung.00405.2017 Feldman, C. and Anderson, R. (2013) Cigarette Smoking and Mechanisms of Susceptibility to Infections of the Respiratory Tract and Other Organ Systems. Journal of Infection, 67, 169-184. >https://doi.org/10.1016/j.jinf.2013.05.004 Garmendia, J., Morey, P. and Bengoechea, J.A. (2012) Impact of Cigarette Smoke Exposure on Host-Bacterial Pathogen Interactions. European Respiratory Journal, 39, 467-477. >https://doi.org/10.1183/09031936.00061911 Calhoon, J.H., Grover, F.L. and Trinkle, J.K. (1992) CHEST TRAUMA: Approach and Management. Clinics in Chest Medicine, 13, 55-67. >https://doi.org/10.1016/S0272-5231(21)00837-6 Kim, M. and Moore, J.E. (2020) Chest Trauma: Current Recommendations for Rib Fractures, Pneumothorax and Other Injuries. Current Anesthesiology Reports, 10, 61-68. >https://doi.org/10.1007/s40140-020-00374-w Liman, S.T., Kuzucu, A., Tastepe, A.I., et al. (2003) Chest Injury Due to Blunt Trauma. European Journal of Cardio-Thoracic Surgery, 23, 374-378. >https://doi.org/10.1016/s1010-7940(02)00813-8 Flagel, B.T., Luchette, F.A., Reed, R.L., et al. (2005) Half-a-Dozen Ribs: The Breakpoint for Mortality. Surgery, 138, 717-725. >https://doi.org/10.1016/j.surg.2005.07.022 Battle, C.E., Hutchings, H. and Evans, P.A. (2012) Risk Factors That Predict Mortality in Patients with Blunt Chest Wall Trauma: A Systematic Review and Meta-Analysis. Injury, 43, 8-17. >https://doi.org/10.1016/j.injury.2011.01.004 Shulzhenko, N.O., Zens, T.J., Beems, M.V., et al. (2017) Number of Rib Fractures Thresholds Independently Predict Worse Outcomes in Older Patients with Blunt Trauma. Surgery, 161, 1083-1089. >https://doi.org/10.1016/j.surg.2016.10.018 Fukushima, K., Kambe, M., Aramaki, Y., et al. (2023) Evaluation of Injury Threshold from the Number of Rib Fracture for Predicting Pulmonary Injuries in Blunt Chest Trauma. Heliyon, 9, E15278. >https://doi.org/10.1016/j.heliyon.2023.e15278
Baidu
map