Figure 4. Maximum crushing peak force of artificially aged samples with different cooling methods and heat treatment times--图4. 不同冷却方式和不同热处理时间的人工时效样品最大压溃峰值力--Table 4. Specific values of maximum crushing peak force of samples subjected to different artificial aging treatmentsTable 4. Specific values of maximum crushing peak force of samples subjected to different artificial aging treatments 表4. 不同人工时效处理的样品最大压溃峰值力具体数值
Figure 6. Compression curves of samples treated with solid solution and artificial aging at different heat treatment times--图6. 不同热处理时间的固溶处理 + 人工时效处理的样品压缩曲线--Figure 7. Compression process of solid solution treated samples--图7. 固溶处理的样品的压缩过程--Figure 8. Maximum crushing peak force of samples subjected to different solid solution treatments and solid solution treatments + artificial aging treatment--图8. 不同固溶处理和固溶处理 + 人工时效处理的样品最大压溃峰值力--
Figure 9. Specific energy absorption of samples treated with different solid solution treatments and solid solution treatments + artificial aging treatment--图9. 不同固溶处理和固溶处理+人工时效处理的样品的比吸能--Table 5. Specific values of maximum crushing peak force and specific energy absorption for samples treated with solid solution and solid solution + artificial agingTable 5. Specific values of maximum crushing peak force and specific energy absorption for samples treated with solid solution and solid solution + artificial aging 表5. 固溶处理和固溶处理+人工时效处理的样品的最大压溃峰值力和比吸能的具体数值
References
Li, D., Qin, R., Xu, J., Chen, B. and Niu, X. (2022) Effect of Heat Treatment on AlSi10Mg Lattice Structure Manufactured by Selective Laser Melting: Microstructure Evolution and Compression Properties. Materials Characterization, 187, Article 111882. >https://doi.org/10.1016/j.matchar.2022.111882
Kleiner, S., Zürcher, J., Bauer, O. and Margraf, P. (2020) Heat Treatment Response of Selectively Laser Melted AlSi10Mg. HTM Journal of Heat Treatment and Materials, 75, 113-127. >https://doi.org/10.3139/105.110418
Bao, J., Wu, Z., Wu, S., Hu, D., Sun, W. and Wang, R. (2022) The Role of Defects on Tensile Deformation and Fracture Mechanisms of AM AlSi10Mg Alloy at Room Temperature and 250℃. Engineering Fracture Mechanics, 261, Article 108215. >https://doi.org/10.1016/j.engfracmech.2021.108215
Park, T., Baek, M., Hyer, H., Sohn, Y. and Lee, K. (2021) Effect of Direct Aging on the Microstructure and Tensile Properties of AlSi10Mg Alloy Manufactured by Selective Laser Melting Process. Materials Characterization, 176, Article 111113. >https://doi.org/10.1016/j.matchar.2021.111113
Han, Q. and Jiao, Y. (2019) Effect of Heat Treatment and Laser Surface Remelting on AlSi10Mg Alloy Fabricated by Selective Laser Melting. The International Journal of Advanced Manufacturing Technology, 102, 3315-3324. >https://doi.org/10.1007/s00170-018-03272-y
Casati, R., Hamidi Nasab, M., Coduri, M., Tirelli, V. and Vedani, M. (2018) Effects of Platform Pre-Heating and Thermal-Treatment Strategies on Properties of AlSi10Mg Alloy Processed by Selective Laser Melting. Metals, 8, Article 954. >https://doi.org/10.3390/met8110954
Ahn, S.Y., Moon, J., Choi, Y.T., Kim, E.S., Jeong, S.G., Park, J.M., et al. (2022) A Precipitation-Hardened AlSi10Mg Alloy Fabricated Using Selective Laser Melting. Materials Science and Engineering: A, 844, Article 143164. >https://doi.org/10.1016/j.msea.2022.143164
Li, Z., Nie, Y., Liu, B., Kuai, Z., Zhao, M. and Liu, F. (2020) Mechanical Properties of AlSi10Mg Lattice Structures Fabricated by Selective Laser Melting. Materials&Design, 192, Article 108709. >https://doi.org/10.1016/j.matdes.2020.108709
Liu, M., Takata, N., Suzuki, A. and Kobashi, M. (2020) Effect of Heat Treatment on Gradient Microstructure of AlSi10Mg Lattice Structure Manufactured by Laser Powder Bed Fusion. Materials, 13, Article 2487. >https://doi.org/10.3390/ma13112487
Khan, H.M., Dirikolu, M.H. and Koç, E. (2019) Weibull Distribution of Selective Laser Melted AlSi10Mg Parts for Compression Testing. Proceedings of AMC Turkey 2019 Conference, Turkey, 17-18 October 2019.