References
Chen, Z., Dehmer, M. and Shi, Y. (2014) A Note on Distance-Based Graph Entropies. Entropy, 16, 5416-5427. >https://doi.org/10.3390/e16105416
Shannon, C.E. (1948) A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423. >https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Dehmer, M. and Mowshowitz, A. (2011) A History of Graph Entropy Measures. Information Sciences, 181, 57-78. >https://doi.org/10.1016/j.ins.2010.08.041
Ghorbani, M., Dehmer, M. and Zangi, S. (2018) Graph Operations Based on Using Distance-Based Graph Entropies. Applied Mathematics and Computation, 333, 547-555. >https://doi.org/10.1016/j.amc.2018.04.003
Dong, Y. and Cambie, S. (2022) On the Main Distance-Based Entropies: The Eccentricity-and Wiener-Entropy. arXiv Preprint arXiv:2208.12209
Noureen, S., Bhatti, A.A. and Ali, A. (2021) A Note on the Minimum Wiener Polarity Index of Trees with a Given Number of Vertices and Segments or Branching Vertices. Discrete Dynamics in Nature and Society, 2021, Article ID: 1052927. >https://doi.org/10.1155/2021/1052927
Ali, A., Du, Z. and Ali, M. (2018) A Note on Chemical Trees with Minimum Wiener Polarity Index. Applied Mathematics and Computation, 335, 231-236. >https://doi.org/10.1016/j.amc.2018.04.051
Dehmer, M., Emmert-Streib, F. and Shi, Y. (2014) Interrelations of Graph Distance Measures Based on Topological Indices. PLOS ONE, 9, e94985. >https://doi.org/10.1371/journal.pone.0094985
Deng, H. (2011) On the Extremal Wiener Polarity Index of Chemical Trees. MATCH Communications in Mathematical and in Computer Chemistry, 66, 305-314.
Yue, J., Lei, H. and Shi, Y. (2018) On the Generalized Wiener Polarity Index of Trees with a Given Diameter. Discrete Applied Mathematics, 243, 279-285. >https://doi.org/10.1016/j.dam.2018.02.003
Liu, B., Hou, H. and Huang, Y. (2010) On the Wiener Polarity Index of Trees with Maximum Degree or Given Number of Leaves. Computers&Mathematics with Applications, 60, 2053-2057. >https://doi.org/10.1016/j.camwa.2010.07.045
Deng, H. and Xiao, H. (2010) The Maximum Wiener Polarity Index of Trees with k Pendants. Applied Mathematics Letters, 23, 710-715. >https://doi.org/10.1016/j.aml.2010.02.013
Khalifeh, M.H., Yousefi-Azari, H. and Ashrafi, A.R. (2008) The Hyper-Wiener Index of Graph Operations. Computers&Mathematics with Applications, 56, 1402-1407. >https://doi.org/10.1016/j.camwa.2008.03.003
Yero, I.G. and Rodríguez-Velázquez, J.A. (2011) On the Randić Index of Corona Product Graphs. ISRN Discrete Mathematics, 2011, Article ID: 262183. >https://doi.org/10.5402/2011/262183
Dehmer, M., Varmuza, K., Borgert, S. and Emmert-Streib, F. (2009) On Entropy-Based Molecular Descriptors: Statistical Analysis of Real and Synthetic Chemical Structures. Journal of Chemical Information and Modeling, 49, 1655-1663. >https://doi.org/10.1021/ci900060x
Imrich, W., Klavžar, S. and Hammack, R.H. (2000) Product Graphs: Structure and Recognition. John Wiley&Sons Ltd.
Dobrynin, A.A., Entringer, R. and Gutman, I. (2001) Wiener Index of Trees: Theory and Applications. Acta Applicandae Mathematicae, 66, 211-249. >https://doi.org/10.1023/a:1010767517079
Hrinakova, K., et al. (2014) A Congruence Relation for the Wiener Index of Graphs with a Tree-Like Structure. MATCH Communications in Mathematical and in Computer Chemistry, 72, 791-806.
Ma, J., Shi, Y. and Yue, J. (2014) On the Extremal Wiener Polarity Index of Unicyclic Graphs with a Given Diameter. In: Gutman, I., Ed., Topics in Chemical Graph Theory, Mathematical Chemistry Monographs, University of Kragujevac and Faculty of Science Kragujevac, 177-192.
Liu, M. and Liu, B. (2011) On the Wiener Polarity Index. MATCH Communications in Mathematical and in Computer Chemistry, 66, 293-304.
Ma, J., Shi, Y., Wang, Z. and Yue, J. (2016) On Wiener Polarity Index of Bicyclic Networks. Scientific Reports, 6, Article No. 19066. >https://doi.org/10.1038/srep19066