Measurement of the Development Level of New Quality Productivity in China and Analysis of Regional Differences
On the basis of elaborating on the connotation characteristics of new quality productivity, this article constructs an indicator system for the development level of new quality productivity from the perspective of the three elements of productivity, and uses the entropy method to measure the level of new quality productivity in 30 provinces of China from 2011 to 2020. Research has found that: 1) The overall development level of new quality productivity in China is showing an upward trend year by year, with significant differences in the level of new quality productivity among different provinces; 2) There are significant differences in the level of new quality productivity among the four major regions, with the highest level in the eastern region; 3) The level of new quality productivity in the south is significantly higher than that in the north. Based on this, this article believes that we should vigorously promote the spirit of scientists, continuously optimize the environment for industrial innovation and development, and develop new quality productivity according to local conditions.
New Quality Productivity
2023年9月,习近平总书记在黑龙江考察期间首次提出“新质生产力”的概念,强调应积极培育战略性新兴产业和未来产业,加快形成新质生产力。2023年12月,总书记在中央经济工作会议上指出,要以科技创新作为产业创新的助推器,尤其是以颠覆性技术和前沿技术催生新产业、新模式、新动能,发展新质生产力。2024年1月,习近平总书记在中共中央政治局第十一次集体学习时系统阐释了新质生产力的内涵特征,并强调“加快发展新质生产力,扎实推进高质量发展”。在构建新发展格局的背景下,新质生产力的提出不仅对马克思主义生产力理论进行了里程碑式的革新,也为我国未来科技创新和产业融合发展指明方向,使我国能够在世界百年未有之大变局中掌握主动权,具有重大的理论和现实意义。
当前学术界关于新质生产力的研究尚处于起步阶段,主要针对新质生产力的理论含义、内在逻辑、实践路径等展开论述。周文和许凌云
以上学者的研究丰富并拓展了新质生产力的理论范畴,但大多停留在定性层面,对于新质生产力发展水平的评价指标构建及统计测度的定量研究较少。鉴于此,本文根据新质生产力的内涵特征,构建综合评价指标体系,运用熵值法测算2011~2020年中国30个省份的新质生产力发展水平,并考察不同区域之间的水平差异,为因地制宜发展新质生产力提供相关对策及建议,有利于贯彻我国高质量发展理念。
基于上述关于新质生产力内涵的阐述,借鉴已有文献
第一,新质生产力理论中的劳动者具有高水平的劳动素养、高效能的生产水平和更先进的劳动意识,因此本文选用受教育程度、人力资本投入、人力资本产出、人均GDP、人均工资、就业意识、创业意识、创新意识8个指标进行衡量。其中,受教育程度采用平均受教育程度来衡量,人力资本投入用教育支出与一般公共预算支出的比重衡量,人力资本产出选用每十万人口高等学校平均在校生人数来衡量,人均GDP由GDP和总人口的比值衡量,人均工资用在岗职工平均工资来衡量,就业意识采用第三产业就业人数占总就业人数比重进行衡量,创业意识由区域创新创业指数来衡量,创新意识选用R&D人员全时当量衡量。
第二,从劳动对象的维度来看,由创新驱动的新质产业能够发掘出新自然物和包含更多技术要素的原材料,使得劳动对象更加可持续利用,替代高污染自然物及材料,运用绿色生产的方式提高生态环境质量,因此本文从新质产业体系和生态环境质量两方面选取指标。其中,新质产业体系方面采用高技术产业和未来产业两大指标,高技术产业由高技术产业企业数来衡量,未来产业由机器人安装密度来衡量;生态环境质量方面采用环保建设和绿色生产两大指标,环保建设由森林覆盖率、节能环保支出与一般公共预算支出的比值、城镇环境基础设施建设投资占GDP比重来衡量,绿色生产由二氧化硫排放量、一般工业固体废物产生量、化学需氧量排放量与GDP的比值以及绿色专利申请量占专利申请量比重来衡量。
第三,科技创新对劳动资料进行了改造升级,使其便于人们进行生产,本文将劳动资料划分为有形劳动资料和无形劳动资料,包括传统基础设施、数字基础设施、能源消耗、科技创新和数字经济5项指标。其中,传统基础设施选用公路里程和铁路里程来衡量,数字基础设施采用光纤线路长度和人均互联网宽带接入端口数进行衡量,能源消耗用能源消耗总量与GDP的比值来衡量,科技创新选用R&D经费支出占GDP比重、每万人专利授权数量以及技术市场成交额与GDP的比值来衡量,数字经济采用数字普惠金融指数来衡量
一级指标 |
二级指标 |
三级指标 |
衡量方式 |
属性 |
||
劳动者 |
劳动者素质 |
受教育程度 |
平均受教育年限 |
正 |
||
人力资本投入 |
教育支出/一般公共预算支出 |
正 |
||||
人力资本产出 |
每十万人口高等学校平均在校生人数 |
正 |
||||
劳动生产率 |
人均GDP |
GDP/总人口 |
正 |
|||
人均工资 |
在岗职工平均工资 |
正 |
||||
劳动者意识 |
就业意识 |
第三产业就业人数/总就业人数 |
正 |
|||
创业意识 |
区域创新创业指数 |
正 |
||||
创新意识 |
R&D人员全时当量 |
正 |
||||
劳动对象 |
新质产业体系 |
高技术产业 |
高技术产业企业数 |
正 |
||
未来产业 |
机器人安装密度 |
正 |
||||
劳动对象 |
生态环境质量 |
环保建设 |
森林覆盖率 |
正 |
||
节能环保支出/一般公共预算支出 |
正 |
|||||
城镇环境基础设施建设投资/GDP |
正 |
|||||
绿色生产 |
二氧化硫排放量/GDP |
负 |
||||
一般工业固体废物产生量/GDP |
负 |
|||||
化学需氧量排放量/GDP |
负 |
|||||
绿色专利申请数量/专利申请数 |
正 |
|||||
劳动资料 |
有形劳动资料 |
传统基础设施 |
公路里程 |
正 |
||
铁路里程 |
正 |
|||||
数字基础设施 |
光纤线路长度 |
正 |
||||
人均互联网宽带接入端口数 |
正 |
|||||
能源消耗 |
能源消耗总量/GDP |
负 |
||||
无形劳动资料 |
科技创新 |
R&D经费支出/GDP |
正 |
|||
每万人专利授权数量 |
正 |
|||||
技术市场成交额/GDP |
正 |
|||||
数字经济 |
数字普惠金融指数 |
正 |
本文采用熵值法测算新质生产力发展水平。熵值法是一种客观赋权的方法,相比主观赋权法具有更高的准确度和可信度。若某指标的离散程度越大,说明该指标对综合评价的影响就越大,相应赋予较高的权重。具体步骤如下:
1) 为消除各指标之间的量纲差异,本文采用极差标准化的方法对原始数据进行处理,由于一些数据在标准化处理后为零,不便于后续计算,因此需要对数据进行平移。
对于正向指标:
(1)
对于负向指标:
(2)
2) 计算i省份在第j个评价指标上的比重,其中m为评价年数:
(3)
3) 计算第j个评价指标的熵值:
(4)
4) 计算第j个评价指标的变异系数:
(5)
5) 确定第j个评价指标的权重:
(6)
6) 计算i省份的新质生产力发展水平:
(7)
鉴于数据的可得性,本文选取2011~2020年中国30个省份(不包括西藏和港澳台)的面板数据作为样本进行分析。数据主要来源于《中国统计年鉴》《中国环境统计年鉴》《中国能源统计年鉴》、各省份统计年鉴、EPS数据平台、CNRDS平台、北京大学企业大数据研究中心、北京大学数字金融研究中心等,对于少量缺失的数据采用线性插值法补全。
基于前文的指标体系和搜集到的数据,依据熵值法的步骤测算出全国30个省份的新质生产力发展水平,如
但不可忽视的是,各个省份之间的新质生产力水平存在较大的差异。考察期内发展水平排名前三名的省份是广东、北京和江苏,均值分别为0.436、0.427和0.393,均位于我国东部;而位于后三名省份是青海、宁夏和甘肃,均值则为0.112、0.120和0.139,均为西部省份。据此推测,新质生产力发展水平与省份所处的区域位置有较大关联。
省份 |
2011 |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
均值 |
北京 |
0.302 |
0.349 |
0.378 |
0.404 |
0.420 |
0.444 |
0.469 |
0.486 |
0.497 |
0.520 |
0.427 |
天津 |
0.168 |
0.192 |
0.202 |
0.222 |
0.241 |
0.243 |
0.252 |
0.275 |
0.325 |
0.346 |
0.247 |
河北 |
0.134 |
0.150 |
0.162 |
0.171 |
0.190 |
0.206 |
0.231 |
0.247 |
0.267 |
0.286 |
0.204 |
山西 |
0.117 |
0.137 |
0.143 |
0.150 |
0.159 |
0.167 |
0.184 |
0.196 |
0.210 |
0.218 |
0.168 |
内蒙古 |
0.130 |
0.148 |
0.155 |
0.162 |
0.183 |
0.190 |
0.203 |
0.197 |
0.208 |
0.221 |
0.180 |
辽宁 |
0.155 |
0.175 |
0.179 |
0.184 |
0.196 |
0.209 |
0.224 |
0.235 |
0.249 |
0.267 |
0.207 |
吉林 |
0.121 |
0.138 |
0.144 |
0.154 |
0.166 |
0.183 |
0.198 |
0.208 |
0.232 |
0.242 |
0.179 |
黑龙江 |
0.128 |
0.151 |
0.161 |
0.161 |
0.172 |
0.179 |
0.191 |
0.191 |
0.209 |
0.218 |
0.176 |
上海 |
0.195 |
0.221 |
0.226 |
0.241 |
0.257 |
0.267 |
0.294 |
0.325 |
0.343 |
0.384 |
0.275 |
江苏 |
0.257 |
0.301 |
0.327 |
0.342 |
0.375 |
0.394 |
0.422 |
0.457 |
0.495 |
0.557 |
0.393 |
浙江 |
0.223 |
0.262 |
0.283 |
0.303 |
0.344 |
0.353 |
0.382 |
0.424 |
0.457 |
0.506 |
0.354 |
安徽 |
0.135 |
0.159 |
0.176 |
0.186 |
0.211 |
0.227 |
0.249 |
0.274 |
0.290 |
0.313 |
0.222 |
福建 |
0.158 |
0.180 |
0.192 |
0.203 |
0.229 |
0.238 |
0.258 |
0.291 |
0.303 |
0.330 |
0.238 |
江西 |
0.137 |
0.159 |
0.158 |
0.166 |
0.184 |
0.201 |
0.229 |
0.254 |
0.281 |
0.305 |
0.207 |
山东 |
0.183 |
0.210 |
0.230 |
0.243 |
0.269 |
0.287 |
0.307 |
0.325 |
0.329 |
0.371 |
0.275 |
河南 |
0.130 |
0.148 |
0.163 |
0.178 |
0.198 |
0.221 |
0.242 |
0.254 |
0.269 |
0.284 |
0.209 |
湖北 |
0.149 |
0.169 |
0.190 |
0.206 |
0.228 |
0.254 |
0.268 |
0.288 |
0.311 |
0.333 |
0.240 |
湖南 |
0.136 |
0.160 |
0.174 |
0.187 |
0.200 |
0.214 |
0.238 |
0.251 |
0.271 |
0.296 |
0.213 |
广东 |
0.268 |
0.302 |
0.332 |
0.346 |
0.374 |
0.410 |
0.466 |
0.559 |
0.617 |
0.689 |
0.436 |
广西 |
0.112 |
0.124 |
0.137 |
0.149 |
0.160 |
0.173 |
0.182 |
0.194 |
0.210 |
0.237 |
0.168 |
海南 |
0.094 |
0.107 |
0.113 |
0.115 |
0.135 |
0.145 |
0.160 |
0.174 |
0.181 |
0.190 |
0.141 |
重庆 |
0.141 |
0.146 |
0.158 |
0.173 |
0.193 |
0.213 |
0.226 |
0.252 |
0.259 |
0.276 |
0.204 |
四川 |
0.124 |
0.151 |
0.165 |
0.179 |
0.203 |
0.218 |
0.246 |
0.280 |
0.302 |
0.324 |
0.219 |
贵州 |
0.076 |
0.089 |
0.107 |
0.119 |
0.139 |
0.151 |
0.165 |
0.186 |
0.198 |
0.205 |
0.144 |
云南 |
0.104 |
0.118 |
0.122 |
0.133 |
0.152 |
0.166 |
0.183 |
0.203 |
0.217 |
0.226 |
0.162 |
陕西 |
0.149 |
0.169 |
0.190 |
0.203 |
0.219 |
0.238 |
0.247 |
0.262 |
0.292 |
0.318 |
0.229 |
甘肃 |
0.087 |
0.105 |
0.112 |
0.118 |
0.138 |
0.146 |
0.157 |
0.164 |
0.174 |
0.189 |
0.139 |
青海 |
0.060 |
0.077 |
0.090 |
0.091 |
0.113 |
0.120 |
0.137 |
0.147 |
0.137 |
0.148 |
0.112 |
宁夏 |
0.072 |
0.075 |
0.091 |
0.092 |
0.109 |
0.118 |
0.143 |
0.159 |
0.159 |
0.182 |
0.120 |
新疆 |
0.093 |
0.114 |
0.121 |
0.124 |
0.136 |
0.145 |
0.165 |
0.166 |
0.177 |
0.192 |
0.143 |
均值 |
0.145 |
0.166 |
0.179 |
0.190 |
0.210 |
0.224 |
0.244 |
0.264 |
0.282 |
0.306 |
为更直观展现出省份间新质生产力的水平差距,本文选取发展水平普遍最高的2020年进行分析,结果见
本文依据省份的区域位置,将其划分为东部、中部、西部和东北部四大地区,分别考察不同地区之间的新质生产力水平的均值变化趋势,如
目前对于南北地区的划分,国家尚未出台相关文件明确界定范围,因此学术层面存在多种划分方法。本文参照学术界的大多数做法
南北方新质生产力水平都保持逐年增长的态势,南方地区的新质生产力水平一直高于北方地区,且差距不断拉大,呈现出“南快北慢”的发展趋势。可见,我国区域发展不平衡的问题不仅体现于东部地区的断档领先,还反映在南北方纬度视角的差异上。
本文依据新质生产力的内涵特征,分别从劳动者、劳动对象和劳动资料三个维度构建新质生产力发展水平综合评价指标体系,并选取2011~2020年中国30个省份的面板数据,运用熵值法测算新质生产力水平。得到的研究结论有:第一,中国新质生产力发展水平逐年上升,不同省份之间的新质生产力水平均值差异较大,广东、北京和江苏名列前茅,青海、宁夏和甘肃位居后三名。第二,四大地区的新质生产力水平存在显著差异,排名依次为东部 > 中部 > 东北部 > 西部,但从平均增速上,则具体表现为西部 > 中部 > 东部 > 东北部。第三,南方地区的新质生产力水平及增速整体上均高于北方地区,存在区域发展不平衡的问题。
根据以上结论,本文提出以下政策建议:
1) 大力弘扬科学家精神,强化科技创新主导作用。本文表明,在同级指标中科技创新的权重最高,是提升新质生产力水平的主要源泉,必须不断推进科技高水平自立自强。除了在物质层面为科技创新提供基础保障,精神层面的宣传教育作用不可忽视。2020年9月,习近平总书记在召开科学家座谈会时指出,科学技术离不开科学家精神的支撑。科学家精神包含爱国、创新、求实、奉献、协同、育人六大精神内核,是全国科技工作者在长期科学实践中积累的宝贵精神财富。大力弘扬科学家精神,在全社会范围内形成尊重科学、崇尚创新、服务人民的社会风气,将有利于培育敢挑科技大梁的高水平科技人才,给我国的科创产业注入新鲜血液。为此,应将科学家精神融入高校思政课程教育中
2) 聚焦新质产业体系建设,优化产业创新发展环境。新质生产力与产业新赛道相伴而生,当前我国在新能源等新兴产业领域已取得了国际领先优势,掌握了一定的话语权和主导权。为将优势拓展到其他新质产业,应加强对新质产业的资金补助力度,提供更大额度的科技项目贷款,在税收层面上出台相关政策文件给予其税收优惠。在设施建设方面,应更多建设如5G基站、工业互联网等产业创新依赖性更强的数字基础设施,并对产业创新需求持续关注,集中力量培育产业创新。
3) 推进地区协调发展,因地制宜发展新质生产力。研究表明,目前我国区域间新质生产力发展水平存在较大差异,东部地区大幅领先其他地区,南方优于北方。因此,应针对弱势地区出台相应的扶持政策,引导吸收优势地区剩余的发展能力,将其优势辐射到全国范围。另外,发展水平落后的省份应利用自身的独特优势培育竞争力,如东北地区可应用科技创新成果,围绕发展新质生产力布局冰雪体育产业链,培养掌握新兴技术的冰雪职业人才,形成高质量冰雪产业集聚区,大力发展“冰雪经济”,充分发挥文旅产业的带动作用。
*通讯作者。