acm Advances in Clinical Medicine 2161-8712 2161-8720 beplay体育官网网页版等您来挑战! 10.12677/acm.2024.1461953 acm-90607 Articles 医药卫生 高糖条件下HRCECs中GALNT2与p-EGFR相关性研究
A Study on the Correlation between GALNT2 in HRCECs and p-EGFR under High Sugar Conditions
包岭君 1 格日勒图 2 内蒙古科技大学包头医学院研究生院,内蒙古 包头 内蒙古自治区人民医院眼科,内蒙古 呼和浩特 06 06 2024 14 06 1593 1602 28 5 :2024 23 5 :2024 23 6 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 目的:探讨在高糖条件下敲低多肽N-乙酰半乳糖胺转移酶2 (GALNT2)与抑制磷酸化表皮生长因子受体(Phosphorylated epidermal growth factor receptor, p-EGFR)对视网膜血管内皮细胞(HRCECs)增生及凋亡的影响。方法:本研究以高糖(25 mmol·L 1)状态下体外培养的HRCECs为研究对象,将HRCECs分为mock组(25 mmol·L 1葡萄糖)、mock + shGALNT2组(25 mmol·L 1葡萄糖 + GALNT2敲低病毒)、mock + NC-shGALNT2 + Chrysophanol组(25 mmol·L 1葡萄糖 + 对照病毒 + Chrysophanol)、mock + shGALNT2 + Chrysophanol组(25 mmol·L 1葡萄糖 + GALNT2敲低病毒 + Chrysophanol),连同培养液在37℃恒温培养箱中培养24 h,比较各组GALNT2 mRNA相对表达量、细胞增生值、细胞凋亡率,以及GALNT2、EGFR、EGF、p-EGFR蛋白相对表达量。结果:mock组、mock + shGALNT2、mock + NC-shGALNT2 + Chrysophanol组和mock + shGALNT2 + Chrysophanol组细胞中GALNT2 mRNA相对表达量比较,差异有统计学意义(P < 0.001)。mock + NC-shGALNT2 + Chrysophanol组和mock + shGALNT2 + Chrysophanol组中细胞增生值低于mock + shGALNT2组,差异具有统计学意义(P < 0.001);mock + shGALNT2 + Chrysophanol组中细胞增生值高于mock + NC-shGALNT2 + Chrysophanol组,差异具有统计学意义(P < 0.001)。mock组、mock + shGALNT2组、mock + NC-shGALNT2 + Chrysophanol组和mock + shGALNT2 + Chrysophanol组细胞凋亡率分别为(8.66 ± 0.22)%、(5.47 ± 0.16)%、(11.94 ± 0.85)%和(6.70 ± 0.26)%,总体比较差异有统计学意义(F = 96.56, P < 0.001)。mock + shGALNT2 + chrysophanol组细胞凋亡率高于mock + shGALNT2组,差异有统计学意义(P < 0.001);mock + shGALNT2 + chrysophanol组细胞凋亡率低于mock + NC-shGALNT2 + chrysophanol组,差异有统计学意义(P < 0.001)。mock + NC-shGALNT2 + Chrysophanol 组和mock + shGALNT2 + Chrysophanol组GALNT2蛋白相对表达量高于mock + shGALNT2组,差异有统计学意义(P < 0.001)。mock + NC-shGALNT2 + Chrysophanol组EGF、EGFR、p-EGFR蛋白相对表达量高于mock + shGALNT2组,但差异无统计学意义(P > 0.05)。结论:在高糖条件下,敲低的GALNT2可以通过介导p-EGFR可以提高HRCECs细胞的增殖能力,减少HRCECs细胞的凋亡。
Objective: To investigate the effects of knocking down peptide N-acetylgalactosamine transferase 2 (GALNT2) and inhibiting phosphorylation of epidermal growth factor receptor under high glucose conditions on the proliferation and apoptosis of retinal vascular endothelial cells (HRCECs). Method: This study focuses on cultured HRCECs in vitro under high glucose (25 mmol·L 1) conditions, and divides them into a mock group (25 mmol·L 1glucose), mock + shGALNT2 group (25 mmol·L 1glucose + GALNT2 knockdown virus), mock + NC-shGALNT2 + Chrysophanol group (25 mmol·L 1glucose + control virus + Chrysophanol), mock + shGALNT2 + Chrysophanol group (25 mmol·L 1glucose + GALNT2 knockdown virus + Chrysophanol) and culture medium were cultured in a constant temperature incubator at 37˚C for 24 hours. The relative expression level of GALNT2 mRNA, cell proliferation value, apoptosis rate, GALNT2, EGFR, EGF, and p-EGFR proteins were compared between the groups. Results: The relative expression levels of GALNT2 mRNA in the cells of the mock group, mock + shGALNT2 group, mock + NC-shGALNT2 + Chrysophanol group, were compared with mock + shGALNT2 + Chrysophanol group, and the differences were statistically significant (P < 0.001). Compared with mock + shGALNT2 group, the cell proliferation values in mock + NC-shGALNT2 + Chrysophanol and mock + shGALNT2 + Chrysophanol group were significantly reduced, and the differences were statistically significant (P < 0.001); Compared with mock + NC-shGALNT2 + Chrysophanol group, the cell proliferation value in mock + shGALNT2 + Chrysophanol group significantly increased, and the difference was statistically significant (P < 0.001). The apoptosis rates of mock group, mock + shGALNT2 group, mock + NC-shGALNT2 + Chrysophanol group and mock + shGALNT2 + Chrysophanol group were (8.66 ± 0.22)%, (5.47 ± 0.16)%, (11.94 ± 0.85)% and (6.70 ± 0.26)% respectively. The overall differences were statistically significant (F = 96.56), (P < 0.001). Compared with mock + shGALNT2 group, the apoptosis rate of the mock + shGALNT2 + Chrysophanol group was significantly increased, and the difference was statistically significant (P < 0.001); Compared with the mock + NC-shGALNT2 + Chrysophanol group, the apoptosis rate of the mock + shGALNT2 + Chrysophanol group was significantly reduced, and the difference was statistically significant (P < 0.001). Compared with mock + shGALNT2 group, the relative expression level of GALNT2 protein in the mock + NC-shGALNT2 + Chrysophanol and mock + shGALNT2 + Chrysophanol group significantly was increased, and the difference was statistically significant (P < 0.001). Comparison of relative protein expression levels of EGF, EGFR, and p-EGFR proteins in mock + shGALNT2, the mock + NC-shGALNT2 + Chrysophanol group showed an increasing trend, and the differences were not statistically significant (P > 0.05). Conclusion: Under high glucose conditions, knocking down GALNT2 can enhance the proliferation ability of HRCEC cells and reduce apoptosis by mediating p-EGFR.
糖尿病视网膜病变,多肽N-乙酰半乳糖胺转移酶2,p-EGFR抑制剂
Diabetes Retinopathy
Peptide N-Acetylgalactosamine Transferase 2 P-EGFR Inhibitor
1. 前言

糖尿病(diabetes mellitus, DM)是一组由遗传、环境和自身免疫性疾病引起的慢性代谢性疾病。长期的代谢紊乱可导致微血管和大血管疾病、神经并发症等。糖尿病视网膜病变(diabetes retinopathy, DR)是DM最常见和最严重的微血管并发症之一 [1] [2] 。全球有1亿多人口患有DR [3] 。DR是一种进行性发展的疾病,是危害视力的主要视网膜类疾病 [4] 。而表皮生长因子受体(Epidermal growth factor Receptor, EGFR)的磷酸化对DR具有保护作用 [5] ,其原因是EGFR通过与配体结合到胞外结构域,并触发磷酸化,启动多个下游信号传导通路 [6] ,包括MAPK、PI3K-AKT和STAT3和STAT5,通过这些通路来调节细胞的增殖、凋亡和血管生成 [7] 。多肽N-乙酰半乳糖胺转移酶2 (polypeptide N-acetylgalactosaminyltransferase 2, GALNT2)是调节黏蛋白O-糖基化起始步骤的酶,通过调节EGFR的活性(磷酸化)而起作用 [8] 。氧连-N-乙酰葡萄糖胺修饰(O-linked N-acetylglucosamine, O-GlcNAc)、信号转导和转录激活因子3 (Signal Transduction and Transcription Activator 3, STAT3)磷酸化可减轻原代视网膜血管内皮细胞(retinal vascular endothelial cells, RVECs)的细胞凋亡 [9] [10] 。大黄酚(Chrysophanic Acid)是一种天然蒽醌,其通过抑制兔抗表面生长因子(epidermal growth factor, EGF)诱导的EGFR磷酸化并抑制AKT和mTOR/p70S6K的活化明显阻断细胞增殖。既往研究表明,在DM模型小鼠体内和细胞体外实验中我们都得出,GALNT2与P-EGFR表达呈负相关性 [11] ,因此,我们推测,高糖环境下敲低的GALNT2通过介导EGFR磷酸化对DR起到保护作用。本实验的研究目的是将人视网膜毛细血管内皮细胞(human retinal capillary endothelial cells, HRCECs)置于高糖条件下,探究敲低GALNT2与EGFR磷酸化抑制剂(Chrysophanol)对HRCECs的影响,并与对照组比较,进一步证实敲低的GALNT2通过介导EGFR磷酸化可以提高HRCECs细胞的增殖能力,减少HRCECs细胞的凋亡,以期为DR的临床治疗提供新的思路与靶点。

2. 材料与方法 2.1. 材料

HRCECs购自美国ATCC公司;DMEM培养基购自武汉普诺赛生命科技有限公司;凋亡试剂盒、磷酸盐缓冲剂(phosphate buffer solution, PBS)购自美国eBioscience公司;Trizol购自美国Sigma公司(T9424-100 m);Hiscript QRT supermix for qPCR (+gDNA WIPER)购自南京Vazyme生物科技股份有限公司(R123-01);AceQ qPCR SYBR Green master mix试剂盒购自南京Vazyme生物科技股份有限公司(Q111-02);Real time PCR仪器购自美国ABI公司(VII7);稳压电泳仪、蛋白转模仪、SDS-Acry/Bis蛋白电泳仪均购自上海天能科技有限公司;Nanodrop 2000c紫外分光光度计购自美国Thermo Fisher科技公司;流式细胞仪购自美国Millipore公司;5417R台式冷冻高速离心机购自德国Eppendorf公司;胎牛血清购自美国Invitrogen公司(10099-141);兔抗GALNT2多克隆抗体(Ab262868)、兔抗表面生长因子(epidermal growth factor, EGF)多克隆抗体(Ab184265)、兔抗EGFR多克隆抗体(Ab52894)、兔抗磷酸化EGFR (p-EGFR)多克隆抗体(Ab40815)均购自英国Abcam公司;兔抗甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)多克隆抗体购自美国Bioworld公司(AP0063);EGFR磷酸化抑制剂(Chrysophanol)购自上海抚生实业有限公司(110796-201922)。

2.2. 方法

将HRCECs细胞置于含有1 × 105U∙L1青/链霉素和体积分数10%胎牛血清的DMEM培养基中进行培养,在37℃、体积分数5% CO2的恒温培养箱中进行培养。

用适量PBS溶液将葡萄糖配置成25 mmol∙L1浓度。取生长良好的HRCECs细胞,在4孔板中铺板,每孔细胞数为5 × 106个。向每孔细胞上加入25 mmol∙L1浓度的葡萄糖培养48 h,建立高糖模型。

取HRCECs分为mock组(25 mmol∙L1葡萄糖) [12] - [15] 和GALNT2敲低病毒组(25 mmol∙L1葡萄糖)。将mock组细胞进一步分组:mock组(HRCECs不做任何处理)、mock + NC-GALNT2 + Chrysophanol组(25 mmol∙L1葡萄糖 + 对照病毒 + p-EGFR磷酸化抑制剂);将GALNT2敲低病毒组进一步分组:mock + shGALNT2组(慢病毒转染后不做任何处理)、mock + GALNT2 + Chrysophanol组(25 mmol∙L1葡萄糖 + 慢病毒转染后的细胞 + p-EGFR磷酸化抑制剂),分组后继续培养,24 h后观察转染效率,在37℃恒温培养箱中继续培养24 h,收集各组细胞备用。

1) RT-PCR法检测各组GALNT2 mRNA表达情况 提取“1.2.3”中培养的各组细胞,胰蛋白酶消化、离心,收集细胞,采用Trizol提取各组细胞总RNA,根据逆转录试剂盒说明书合成cDNA,以cDNA作为模板在PCR仪上进行扩增反应,PCR扩增反应条件:95℃ 20 min,随后95℃预变性30 s,95℃变性5 s,65℃退火30 s,共40个循环。各组设计3个复孔,实验重复3次。以GAPDH为内参,采用2△△Ct法计算各组中GALNT2的相对表达水平。

2) CCK-8法检测HRCECs细胞增生值 提取“1.2.3”中培养的各组细胞,PBS清洗后,加入2 mL 0.025 g∙L1胰蛋白酶消化、离心,弃去上清,再补充20 mL细胞培养基,均匀吹打,将细胞均匀的接种到96孔板中,每组设置3个复孔,每孔细胞数为5 × 106∙L1,37℃,体积分数5% CO2细胞培养箱培养24 h,每孔加入10 μl CCK-8溶液,培养箱孵育4 h,连续5 d测定在酶标仪450 nm波长处的细胞吸光度值(A值)。实验重复3次。

3) 流式细胞术检测HRCECs细胞凋亡率 提取“1.2.3”中培养的各组细胞,0.025 g∙L1胰酶消化细胞,5 min离心去上清,PBS洗涤细胞2次,取出PBS重悬细胞,再次离心,弃去上清,加入1 × Binding Buffer稀释为1 × 109∙L1,取100 μl细胞悬液,加入5 μl FITC Annexin V和5 μl PI,混匀后25℃避光孵育15 min,后每管加入400 μl 1 × Binding Buffer,流式细胞仪上进行流式分析。每组设置3个复孔,实验重复3次,凋亡率计算法:细胞总凋亡率 = 早期凋亡率 + 晚期凋亡率。

4) Western blot法检测GALNT2、EGFR、P-EGFR和EGF蛋白相对表达量 提取“1.2.3”中培养的各组细胞,胰蛋白酶消化,用预冷PBS洗涤3次。加入500 μl RIPA裂解液提取各组细胞总蛋白,BCA试剂盒测定各样品浓度,100℃ 10 min,至蛋白完全变性,配制SDS-PAGE凝胶,以GAPDH为内参,取40 ug总蛋白依次进行电泳、转膜和封闭过程。一抗孵育:取出封闭完好的PVDF膜,加入相应的一抗(GALNT2抗体1:2000稀释、EGF抗体1:2000稀释、EGFR 1:2000稀释、p-EGFR 1:2000稀释、GAPDH抗体1:3000稀释),4℃摇床孵育过夜;二抗:加入对应二抗(羊抗兔抗体按1:3000稀释),室温孵育2 h,洗膜后显影,采用凝胶成像系统曝光拍照,ImageJ软件分析各组蛋白条带灰度值,每组设置3个复孔,实验重复3次。

2.3. 统计学分析

采用SPSS26.0软件进行统计学分析,GraphPad Prism8.0软件进行绘制图片,符合正态分布的数据使用(均数 ± 标准差)表示,多组间比较采用单因素方差(F)分析各组数据之间的差异,组间两两比较采用LSD-t检验。P < 0.05即认为有显著统计学意义。

3. 结果 3.1. 四组细胞中GALNT2 mRNA相对表达量比较

通过实时定量PCR检测mock组、mock + shGALNT2组、mock + NC-shGALNT2 + Chrysophanol组和mock + shGALNT2 + Chrysophanol组细胞中GALNT2 mRNA相对表达量分别为2.946 ± 0.532、0.613 ± 0.081、1.011 ± 0.186和0.356 ± 0.041,总体比较差异有统计学意义(F = 50.83, P < 0.001)。mock + shGALNT2组、mock + NC-shGALNT2 + Chrysophanol组、mock + shGALNT2 + Chrysophanol 组GALMT2 mRNA相对表达量低于mock组,差异均有统计学意义(P < 0.001)。mock + shGALNT2组、mock + NC-shGALNT2 + Chrysophanol组和mock + shGALNT2 + Chrysophanol组两两比较,差异均无统计学意义(P > 0.05),见 图1

F = 50.83,P < 0.001,与mock组比较,aP < 0.001 (单因素方差分析,LSD-t检验,n = 3)。A:mock组;B:mock + shGALNT2组;C:mock + NC-shGALNT2 + Chrysophanol组;D:mock + shGALNT2 + Chrysophanol组。--Figure 1. Comparison of relative expression levels of GALNT2 mRNA in four groups of cells--
3.2. 四组HRCECs增生值水平比较

培养5 d后,各组进行HRCECs细胞增生值统计,mock + shGALNT2组中细胞增生值高于mock组,mock + NC-shGALNT2 + Chrysophanol组和mock + shGALNT2 + Chrysophanol组中细胞增生值低于mock组,差异有统计学意义(P < 0.01)。mock + NC-shGALNT2 + Chrysophanol组和mock + shGALNT2 + Chrysophano组中细胞增生值低于mock + shGALNT2组,差异有统计学意义(P < 0.01)。mock + shGALNT2 + Chrysophanol组中细胞增生值高于mock + NC-shGALNT2 + Chrysophanol组,差异有统计学意义(P < 0.01),见 图2 表1

随着连续5 d的培养,各组细胞增生A值均有升高趋势,mock + shGALNT2组增高A值逐渐高于其他三组,mock + shGALNT2 + chrysophanol组增生A组逐渐高于mock + NC-shGALNT2 + chrysophanol组A:吸光度;chrysophanol:p-EGFR磷酸化抑制剂。--Figure 2. Changes in proliferation A values of four groups of HRCECs at different time points-- <xref></xref>Table 1. Comparison of cell proliferation A values ( <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <mover accent="true"> <mi> X </mi> <mo> ¯ </mo> </mover> </math> ± S) and total apoptosis rate (%) of cells treated with FITC/PI dual staining method on the 5th day of four groups of cultureTable 1. Comparison of cell proliferation A values ( X ¯ ± S) and total apoptosis rate (%) of cells treated with FITC/PI dual staining method on the 5th day of four groups of culture 表1. 四组培养第5 d时细胞增生A值比较( X ¯ ± S)以及采用FITC/PI双染法处理的细胞总凋亡率(%)

组别

样本量

A值

细胞凋亡率(%)

mock组

3

2.164 ± 0.004

8.66 ± 0.22

mock + shGALNT2组

3

2.822 ± 0.008a

5.47 ± 0.16a

mock + NC-shGALNT2 + Chrysophanol组

3

1.585 ± 0.008ab

11.94 ± 0.85ab

mock + shGALNT2 + Chrysophanol组

3

2.023 ± 0.018abc

6.70 ± 0.26ac

F

5731

96.56

P

<0.001

<0.001

注:与mock组比较,aP < 0.01;与mock + shGALNT2组比较,bP < 0.01;与mock + NC-shGALNT2 + chrysophanol组比较,cP < 0.011 (单因素方差分析,LSD-t检验) A:吸光度;chrysophanol:p-EGFR磷酸化抑制剂。

3.3. 四组HRCECs细胞凋亡水平比较

实验结果显示,mock + shGALNT2组和mock + shGALNT2 + chrysophanol组细胞凋亡率低于mock组,mock + NC-shGALNT2 + chrysophanol组细胞凋亡率高于mock组,差异有统计学意义(P < 0.01)。mock + shGALNT2 + chrysophanol组细胞凋亡率高于mock + shGALNT2组,差异有统计学意义(P < 0.01)。mock + shGALNT2 + chrysophanol组细胞凋亡率低于mock + NC-shGALNT2 + chrysophanol组,差异有统计学意义(P < 0.01),见 图3 表1

图3. 各组细胞凋亡流式细胞检测图

3.4. 四组细胞中GALNT2、EGFR、EGF、p-EGFR蛋白相对表达量比较

实验结果显示,mock组、mock + shGALNT2组、mock + NC-shGALNT2 + Chrysophanol组和mock + shGALNT2 + Chrysophanol组的GALNT2、EGF、EGFR、p-EGFR相对表达量比较,差异均有统计学意义(F = 775.7, 107.9, 78.58, 255.8, P < 0.05)。mock + shGALNT2组、mock + NC-shGALNT2 + Chrysophanol 组和mock + shGALNT2 + Chrysophanol组EGF和p-EGFR蛋白相对表达量高于mock组,GALNT2和EGFR蛋白表达量低于mock组,差异有统计学意义(P < 0.01)。mock + NC-shGALNT2 + Chrysophanol组和mock + shGALNT2 + Chrysophanol组GALNT2蛋白相对表达高于mock + shGALNT2组,差异有统计学意义(P < 0.001)。mock + NC-shGALNT2 + Chrysophanol组EGF、EGFR、p-EGFR蛋白相对表达量高于mock + shGALNT2组,但差异无统计学意义(P > 0.05)。mock + shGALNT2 + Chrysophanol组EGFR蛋白相对表达量高于mock + NC-shGALNT2 + Chrysophanol组,EGF、p-EGFR蛋白相对表达量低于mock + NC-shGALNT2 + Chrysophanol组,差异具有统计学意义(P < 0.01)。见 图4 图5

4. 讨论

DR是DM的主要眼部并发症,是世界范围内视力损害和失明的主要原因 [16] 。高血糖会导致眼底血管内皮细胞受到损伤破坏血–视网膜屏障,使得血液中的葡萄糖、蛋白质等物质漏出,造成视网膜水肿和渗出,对视力造成影响 [17] [18] [19] 。高糖状态下DR患者的屏障受损,血管内皮细胞凋亡,研究发现,内皮细胞功能障碍是导致DR发生的主要发病机制之一 [20] 。因此本文研究高糖条件下HRCECs中GALNT2与p-EGFR的相关性研究,对DR防治具有重要意义。

注:A:mock组、B:mock + shGALNT2组、C:mock + NC-shGALNT2 + Chrysophanol组、D:mock + shGALNT2 + Chrysophanol组GALNT2:多肽N-乙酰半乳糖转移酶2;EGF:表皮生长因子;EGFR:表皮生长因子受体;p-EGFR:磷酸化表皮生长因子;GAPDH:磷酸甘油醛脱氢酶。--Figure 4. Western blot detection of relative expression levels of GALNT2, EGF, EGFR, and p-EGFR proteins in four groups of HRCECs--

图5. A-D为蛋白相对表达量统计图

GALNT2是White等在1995年首次从人胎盘中纯化出的糖基转移酶 [21] ,GALNT2的异常表达会影响多种癌症的恶性程度。GALNT2可以修饰EGFR糖基化和活性,从而调节HCC细胞的恶性行为 [11] 。GALNT2与粘蛋白受体酪氨酸激酶(receptor tyrosine kinase, RTKs)的活化有关,EGFR是最早报道和研究最多的RTKs [22] 。EGFR是一种酪氨酸激酶受体,具有跨膜区和细胞内酪氨酸激酶结构域 [23] 。表皮生长因子与表皮生长因子受体胞外区的结合,会导致受体二聚化,进而催化酪氨酸激酶的活性,诱导下游信号发生级联反应。既往研究表明,EGFR具有O-糖原,GALNT2是调节黏蛋白O-糖基化起始步骤的酶,通过调节EGFR的活性而起作用 [8] 。EGFR是PI3K/Akt途径中的上游分子,当它被激活时会被磷酸化。EGFR下游信号通路参与DR的进展,因而可以通过抑制通路信号分子影响DR的进展 [24]

研究表明,GALNT2可通过调节EGFR的活性,进而调控疾病的进展。Wu YM等 [25] 研究表明,在肝癌中,GALNT2可调节EGFR上的短O-糖聚的结构,GALNT2还可调节EGFR及其下游信号分子的恶性表型和磷酸化水平,进而抑制肝癌细胞的迁徙和侵袭。Wang X等 [26] 研究表明,在胃癌中,GALNT2基因的敲除可以增加胃癌细胞中EGFR磷酸化的增高,从而改变EGF、EGFR的表达,增加胃癌细胞增殖、粘附和侵袭。本文研究中,mock组GALNT2 mRNA蛋白表达量、HRCECs细胞凋亡率低于mock + shGALNT2组比较,mock组HRCECs细胞增生值水平高于mock + shGALNT2组。研究结果表明,敲低GALNT2对DR有保护作用。既往研究表明,GALNT2可通过介导EGFR磷酸化对DR起到保护作用 [11] 。敲低GALNT2可以通过EGFR下游信号通路的激活(磷酸化),减少HRCECs细胞凋亡,可以对DR起保护作用 [21] 。曹航等 [27] 研究表明,在卵巢癌中,抑制EGFR下游信号分子PI3K/AKT/mTOR通路,可对卵巢癌的激活、增殖、侵袭和耐药起到重要作用。本文研究中,mock+shGALNT2组GALNT2 mRNA蛋白表达量低于mock + shGALNT2 + Chrysophanol组,但无统计学意义。研究结果表明,敲低GALNT2与EGFR磷酸化抑制剂都是通过阻断EGFR磷酸化下游信号通路,进而延缓DR的进展。本文研究将EGFR磷酸化抑制剂(Chrysophanol)引入眼科领域,对前期实验“敲低GALNT2可能通过调控EGFR,p-EGFR参与DR的发生发展 [20] ”进行回复性实验。Western blot法检细胞中GALNT2、EGFR、EGF、p-EGFR蛋白相对表达量:mock + NC-shGALNT2 + Chrysophanol组与mock + shGALNT2 + Chrysophanol组比较,HRCECs中EGFR相对表达量明显增多,p-EGFR相对表达量显著减少。mock + shGALNT2组与mock + NC-shGALNT2 + Chrysophanol组比较,HRCECs中EGFR相对表达量明显增多,p-EGFR相对表达量显著减少。本实验研究结果表明,敲低GALNT2和加入p-EGFR磷酸化抑制剂均可以逆转EGFR和p-EGFR的表达。

综上所述,本研究结果表明,在高糖环境下,HRCECs内敲低GALNT2的作用与EGFR磷酸化抑制剂的作用效果一致,敲低GALNT2基因后EGFR磷酸化同样被阻止或抑制。因此我们推测,在高糖条件下,敲低的GALNT2可以通过介导p-EGFR可以提高HRCECs细胞的增殖能力,减少HRCECs细胞的凋亡,以期为DR的临床治疗提供新的思路与靶点。

基金项目

内蒙古自治区自然科学基金(编号:2021LHMS08064)。

NOTES

*通讯作者。

References 孔慧, 崔彦. 糖尿病视网膜病变中视网膜内皮细胞功能障碍的研究进展[J]. 眼科新进展, 2022, 42(9): 753-756. >https://doi.org/10.13389/j.cnki.rao.2022.0155 吕伯昌, 刘蓓, 刘静, 等. 基因沉默解离素-金属蛋白酶17(ADAM17)对高糖环境下人视网膜微血管内皮细胞通透性、增殖、迁移以及蛋白表达的影响[J]. 眼科新进展, 2017, 37(3): 205-209. Tan, T. and Wong, T.Y. (2023) Diabetic Retinopathy: Looking forward to 2030. Frontiers in Endocrinology, 13, Article ID: 1077669. >https://doi.org/10.3389/fendo.2022.1077669 Perais, J., Agarwal, R., Evans, J.R., Loveman, E., Colquitt, J.L., Owens, D., et al. (2023) Prognostic Factors for the Development and Progression of Proliferative Diabetic Retinopathy in People with Diabetic Retinopathy. Cochrane Database of Systematic Reviews, 2, CD013775. >https://doi.org/10.1002/14651858.cd013775.pub2 Maugeri, G., D’Amico, A.G., Bucolo, C. and D’Agata, V. (2019) Protective Effect of PACAP-38 on Retinal Pigmented Epithelium in an in Vitro and in Vivo Model of Diabetic Retinopathy through EGFR-Dependent Mechanism. Peptides, 119, Article ID: 170108. >https://doi.org/10.1016/j.peptides.2019.170108 Kobayashi, Y. and Mitsudomi, T. (2016) Not All Epidermal Growth Factor Receptor Mutations in Lung Cancer Are Created Equal: Perspectives for Individualized Treatment Strategy. Cancer Science, 107, 1179-1186. >https://doi.org/10.1111/cas.12996 Mitsudomi, T. and Yatabe, Y. (2007) Mutations of the Epidermal Growth Factor Receptor Gene and Related Genes as Determinants of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors Sensitivity in Lung Cancer. Cancer Science, 98, 1817-1824. >https://doi.org/10.1111/j.1349-7006.2007.00607.x Sun, Z., Xue, H., Wei, Y., Wang, C., Yu, R., Wang, C., et al. (2019) Mucin O-Glycosylating Enzyme GALNT2 Facilitates the Malignant Character of Glioma by Activating the EGFR/PI3K/Akt/mTOR Axis. Clinical Science, 133, 1167-1184. >https://doi.org/10.1042/cs20190145 Xu, C., Liu, G.D., Feng, L., Zhang, C.H. and Wang, F. (2018) Identification of O-Glcnacylation Modification in Diabetic Retinopathy and Crosstalk with Phosphorylation of STAT3 in Retina Vascular Endothelium Cells. Cellular Physiology and Biochemistry, 49, 1389-1402. >https://doi.org/10.1159/000493444 Marucci, A., di Mauro, L., Menzaghi, C., Prudente, S., Mangiacotti, D., Fini, G., et al. (2013) GALNT2 Expression Is Reduced in Patients with Type 2 Diabetes: Possible Role of Hyperglycemia. PLOS ONE, 8, e70159. >https://doi.org/10.1371/journal.pone.0070159 李春宇, 格日勒图. GALNT2与P-EGFR在糖尿病模型鼠视网膜中的表达研究[J]. 内蒙古医学杂志, 2022, 54(5): 517-520. Tan, A., Li, T., Ruan, L., Yang, J., Luo, Y., Li, L., et al. (2021) Knockdown of Malat1 Alleviates High-Glucose-Induced Angiogenesis through Regulating miR-205-5P/VEGF-A Axis. Experimental Eye Research, 207, Article ID: 108585. >https://doi.org/10.1016/j.exer.2021.108585 Yan, Z., Wang, C., Meng, Z., Gan, L., Guo, R., Liu, J., et al. (2022) C1q/TNF-Related Protein 3 Prevents Diabetic Retinopathy via AMPK-Dependent Stabilization of Blood-Retinal Barrier Tight Junctions. Cells, 11, Article No. 779. >https://doi.org/10.3390/cells11050779 Chen, Q., Xi, X., Ma, J., Wang, X., Xia, Y., Wang, X., et al. (2022) The Mechanism by Which Crocetin Regulates the lncRNA NEAT1/miR-125b-5p/SOX7 Molecular Axis to Inhibit High Glucose-Induced Diabetic Retinopathy. Experimental Eye Research, 222, Article ID: 109157. >https://doi.org/10.1016/j.exer.2022.109157 Xing, X., Wang, H., Niu, T., Jiang, Y., Shi, X. and Liu, K. (2021) RUNX1 Can Mediate the Glucose and O-Glcnac-Driven Proliferation and Migration of Human Retinal Microvascular Endothelial Cells. BMJ Open Diabetes Research&Care, 9, e001898. >https://doi.org/10.1136/bmjdrc-2020-001898 Yang, Z., Tan, T., Shao, Y., Wong, T.Y. and Li, X. (2022) Classification of Diabetic Retinopathy: Past, Present and Future. Frontiers in Endocrinology, 13, Article ID: 1079217. >https://doi.org/10.3389/fendo.2022.1079217 陈晓云, 李建桥, 朱晓波, 等. 复方血栓通对人视网膜血管内皮细胞抗氧化损伤的保护作用及其机制[J]. 中华实验眼科杂志, 2011, 29(10): 872-878. 吴绵绵, 郭芳, 李亚红, 等. α-黑素细胞刺激素作用后高糖高脂下视网膜血管内皮细胞差异表达基因分析[J]. 中华实验眼科杂志, 2019, 37(9): 694-700. Huang, H. (2020) Pericyte-Endothelial Interactions in the Retinal Microvasculature. International Journal of Molecular Sciences, 21, Article No. 7413. >https://doi.org/10.3390/ijms21197413 Sorrentino, F.S., Matteini, S., Bonifazzi, C., Sebastiani, A. and Parmeggiani, F. (2018) Diabetic Retinopathy and Endothelin System: Microangiopathy versus Endothelial Dysfunction. Eye, 32, 1157-1163. >https://doi.org/10.1038/s41433-018-0032-4 孙天洋, 格日勒图, 张玉凤, 等. 敲低GALNT2基因对高糖培养的人视网膜血管内皮细胞凋亡的抑制作用及其机制[J]. 中华实验眼科杂志, 2023, 41(9): 846-853. Camara-Quintana, J.Q., Nitta, R.T. and Li, G. (2012) Pathology: Commonly Monitored Glioblastoma Markers: EFGR, EGFRvIII, PTEN, and MGMT. Neurosurgery Clinics of North America, 23, 237-246. >https://doi.org/10.1016/j.nec.2012.01.011 Ju, X., Yang, X., Yan, T., Chen, H., Song, Z., Zhang, Z., et al. (2018) EGFR Inhibitor, AG1478, Inhibits Inflammatory Infiltration and Angiogenesis in Mice with Diabetic Retinopathy. Clinical and Experimental Pharmacology and Physiology, 46, 75-85. >https://doi.org/10.1111/1440-1681.13029 李涛, 杨丽霞, 高博, 等. JAK/STAT信号通路干预糖尿病微血管并发症研究进展[J]. 中国临床药理学与治疗学, 2023, 28(12): 1415-1421. Wu, Y., Liu, C., Hu, R., Huang, M., Lee, J., Chen, C., et al. (2011) Mucin Glycosylating Enzyme GALNT2 Regulates the Malignant Character of Hepatocellular Carcinoma by Modifying the EGF Receptor. Cancer Research, 71, 7270-7279. >https://doi.org/10.1158/0008-5472.can-11-1161 Wang, X., McCullough, K.D., Franke, T.F. and Holbrook, N.J. (2000) Epidermal Growth Factor Receptor-Dependent Akt Activation by Oxidative Stress Enhances Cell Survival. Journal of Biological Chemistry, 275, 14624-14631. >https://doi.org/10.1074/jbc.275.19.14624 曹航, 邓文慧, 陈刘月, 等. PI3K通路抑制剂在卵巢癌化疗治疗中的研究进展[J]. 牡丹江医学院学报, 2022, 43(5): 124-127.
Baidu
map