非经典NLRP3炎性小体的激活(左)是通过转染或内化感染到细胞质中来诱导的。Caspase-11/4/5通过切割GSDMD诱导细胞炭化。这一过程还通过胱天蛋白酶-11激活pannexin-1,释放ATP并诱导K+ eHux,从而驱动NLRP3炎性小体的组装和IL-1b的释放。替代性NLRP3炎性小体(右)在人类单核细胞中对LPS的反应中被激活,需要受体相互作用的丝氨酸/苏氨酸蛋白激酶1(RIPK1)、FADD和胱天蛋白酶-8来激活。该途径是K+独立的,不会导致焦炭死亡。--Figure 2. Activation mechanisms of non classical and alternative NLRP3 inflammasome pathways--3.3. 替代途径
自噬抑制NLRP3炎性小体的表达,主要是由于ASC的减少、ROS的清除和NLRP3磷酸化水平的增加。自噬增强NLRP3的表达,NLRP3可以通过ATG5依赖的非经典途径增强胱天蛋白酶-1的激活,促进炎性小体的激活,从而增加IL-1β。NLRP3抑制自噬,LC3-II与LC3-I的比例显著降低。自噬与NLRP3之间的关系是复杂的。--Figure 3. The regulatory mechanism of autophagy and NLRP3 inflammasome--
References
Wang, Y., Hu, H., Wang, Q., Li, Z., Zhu, Y., Zhang, W., et al. (2017) The Level and Clinical Significance of 5-Hydroxymethylcytosine in Oral Squamous Cell Carcinoma: An Immunohistochemical Study in 95 Patients. Pathology—Research and Practice, 213, 969-974. >https://doi.org/10.1016/j.prp.2017.04.016
Panarese, I., Aquino, G., Ronchi, A., Longo, F., Montella, M., Cozzolino, I., et al. (2019) Oral and Oropharyngeal Squamous Cell Carcinoma: Prognostic and Predictive Parameters in the Etiopathogenetic Route. Expert Review of Anticancer Therapy, 19, 105-119. >https://doi.org/10.1080/14737140.2019.1561288
Takeuchi, O. and Akira, S. (2010) Pattern Recognition Receptors and Inflammation. Cell, 140, 805-820. >https://doi.org/10.1016/j.cell.2010.01.022
Kim, Y.K., Shin, J. and Nahm, M.H. (2016) Nod-Like Receptors in Infection, Immunity, and Diseases. Yonsei Medical Journal, 57, 5-14. >https://doi.org/10.3349/ymj.2016.57.1.5
Liston, A. and Masters, S.L. (2017) Homeostasis-Altering Molecular Processes as Mechanisms of Inflammasome Activation. Nature Reviews Immunology, 17, 208-214. >https://doi.org/10.1038/nri.2016.151
Mangan, M.S.J., Olhava, E.J., Roush, W.R., Seidel, H.M., Glick, G.D. and Latz, E. (2018) Targeting the NLRP3 Inflammasome in Inflammatory Diseases. Nature Reviews Drug Discovery, 17, 588-606. >https://doi.org/10.1038/nrd.2018.97
Kelley, N., Jeltema, D., Duan, Y. and He, Y. (2019) The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 20, Article 3328. >https://doi.org/10.3390/ijms20133328
Vandanmagsar, B., Youm, Y., Ravussin, A., Galgani, J.E., Stadler, K., Mynatt, R.L., et al. (2011) The NLRP3 Inflammasome Instigates Obesity-Induced Inflammation and Insulin Resistance. Nature Medicine, 17, 179-188. >https://doi.org/10.1038/nm.2279
He, Y., Hara, H. and Núñez, G. (2016) Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends in Biochemical Sciences, 41, 1012-1021. >https://doi.org/10.1016/j.tibs.2016.09.002
Xue, Y., Enosi Tuipulotu, D., Tan, W.H., Kay, C. and Man, S.M. (2019) Emerging Activators and Regulators of Inflammasomes and Pyroptosis. Trends in Immunology, 40, 1035-1052. >https://doi.org/10.1016/j.it.2019.09.005
Rathinam, V.A.K. and Fitzgerald, K.A. (2016) Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell, 165, 792-800. >https://doi.org/10.1016/j.cell.2016.03.046
De Nardo, D. and Latz, E. (2011) NLRP3 Inflammasomes Link Inflammation and Metabolic Disease. Trends in Immunology, 32, 373-379. >https://doi.org/10.1016/j.it.2011.05.004
Davis, B.K., Wen, H. and Ting, J.P.-. (2011) The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases. Annual Review of Immunology, 29, 707-735. >https://doi.org/10.1146/annurev-immunol-031210-101405
Martinon, F., Burns, K. and Tschopp, J. (2002) The Inflammasome. Molecular Cell, 10, 417-426. >https://doi.org/10.1016/s1097-2765(02)00599-3
Doyle, S., Ozaki, E. and Campbell, M. (2015) Targeting the NLRP3 Inflammasome in Chronic Inflammatory Diseases: Current Perspectives. Journal of Inflammation Research, 8, 15-27. >https://doi.org/10.2147/jir.s51250
Menu, P. and Vince, J.E. (2011) The NLRP3 Inflammasome in Health and Disease: The Good, the Bad and the Ugly. Clinical and Experimental Immunology, 166, 1-15. >https://doi.org/10.1111/j.1365-2249.2011.04440.x
Mason, D.R., Beck, P.L. and Muruve, D.A. (2011) Nucleotide-Binding Oligomerization Domain-Like Receptors and Inflammasomes in the Pathogenesis of Non-Microbial Inflammation and Diseases. Journal of Innate Immunity, 4, 16-30. >https://doi.org/10.1159/000334247
Gurung, P. and Kanneganti, T. (2015) Novel Roles for Caspase-8 in Il-1β and Inflammasome Regulation. The American Journal of Pathology, 185, 17-25. >https://doi.org/10.1016/j.ajpath.2014.08.025
O’Connor, W., Harton, J.A., Zhu, X., Linhoff, M.W. and Ting, J.P. (2003) Cutting Edge: CIAS1/Cryopyrin/PYPAF1/NALP3/CATERPILLER
1.1Is an Inducible Inflammatory Mediator with NF-κB Suppressive Properties. The Journal of Immunology, 171, 6329-6333. >https://doi.org/10.4049/jimmunol.171.12.6329
Hoffman, H.M., Mueller, J.L., Broide, D.H., Wanderer, A.A. and Kolodner, R.D. (2001) Mutation of a New Gene Encoding a Putative Pyrin-Like Protein Causes Familial Cold Autoinflammatory Syndrome and Muckle-Wells Syndrome. Nature Genetics, 29, 301-305. >https://doi.org/10.1038/ng756
Lupfer, C. and Kanneganti, T. (2013) The Expanding Role of NLRs in Antiviral Immunity. Immunological Reviews, 255, 13-24. >https://doi.org/10.1111/imr.12089
Duncan, J.A., Gao, X., Huang, M.T., O’Connor, B.P., Thomas, C.E., Willingham, S.B., et al. (2009) Neisseria gonorrhoeae Activates the Proteinase Cathepsin B to Mediate the Signaling Activities of the NLRP3 and ASC-Containing Inflammasome. The Journal of Immunology, 182, 6460-6469. >https://doi.org/10.4049/jimmunol.0802696
Deretic, V. (2011) Autophagy in Immunity and Cell‐autonomous Defense against Intracellular Microbes. Immunological Reviews, 240, 92-104. >https://doi.org/10.1111/j.1600-065x.2010.00995.x
Galluzzi, L. and Green, D.R. (2019) Autophagy-independent Functions of the Autophagy Machinery. Cell, 177, 1682-1699. >https://doi.org/10.1016/j.cell.2019.05.026
Zaheer, A., Zaheer, S., Sahu, S.K., Knight, S., Khosravi, H., Mathur, S.N., et al. (2006) A Novel Role of Glia Maturation Factor: Induction of Granulocyte‐Macrophage Colony‐Stimulating Factor and Pro‐Inflammatory Cytokines. Journal of Neurochemistry, 101, 364-376. >https://doi.org/10.1111/j.1471-4159.2006.04385.x
Deretic, V., Jiang, S. and Dupont, N. (2012) Autophagy Intersections with Conventional and Unconventional Secretion in Tissue Development, Remodeling and Inflammation. Trends in Cell Biology, 22, 397-406. >https://doi.org/10.1016/j.tcb.2012.04.008
Zhou, H., Feng, L., Xu, F., Sun, Y., Ma, Y., Zhang, X., et al. (2017) Berberine Inhibits Palmitate-Induced NLRP3 Inflammasome Activation by Triggering Autophagy in Macrophages: A New Mechanism Linking Berberine to Insulin Resistance Improvement. Biomedicine&Pharmacotherapy, 89, 864-874. >https://doi.org/10.1016/j.biopha.2017.03.003
Liu, P., Huang, G., Wei, T., Gao, J., Huang, C., Sun, M., et al. (2018) Sirtuin 3-Induced Macrophage Autophagy in Regulating NLRP3 Inflammasome Activation. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1864, 764-777. >https://doi.org/10.1016/j.bbadis.2017.12.027
Spalinger, M.R., Kasper, S., Gottier, C., Lang, S., Atrott, K., Vavricka, S.R., et al. (2016) NLRP3 Tyrosine Phosphorylation Is Controlled by Protein Tyrosine Phosphatase PTPN22. Journal of Clinical Investigation, 126, 1783-1800. >https://doi.org/10.1172/jci83669
Nurmi, K., Kareinen, I., Virkanen, J., Rajamäki, K., Kouri, V., Vaali, K., et al. (2016) Hemin and Cobalt Protoporphyrin Inhibit NLRP3 Inflammasome Activation by Enhancing Autophagy: A Novel Mechanism of Inflammasome Regulation. Journal of Innate Immunity, 9, 65-82. >https://doi.org/10.1159/000448894
Spalinger, M.R., Lang, S., Gottier, C., Dai, X., Rawlings, D.J., Chan, A.C., et al. (2017) PTPN22 Regulates NLRP3-Mediated IL1B Secretion in an Autophagy-Dependent Manner. Autophagy, 13, 1590-1601. >https://doi.org/10.1080/15548627.2017.1341453
Yang, S., Xia, C., Li, S., Du, L., Zhang, L. and Zhou, R. (2014) Defective Mitophagy Driven by Dysregulation of Rheb and KIF5B Contributes to Mitochondrial Reactive Oxygen Species (ROS)-Induced Nod-Like Receptor 3 (NLRP3) Dependent Proinflammatory Response and Aggravates Lipotoxicity. Redox Biology, 3, 63-71. >https://doi.org/10.1016/j.redox.2014.04.001
Wu, J., Li, X., Zhu, G., Zhang, Y., He, M. and Zhang, J. (2016) The Role of Resveratrol-Induced Mitophagy/Autophagy in Peritoneal Mesothelial Cells Inflammatory Injury via NLRP3 Inflammasome Activation Triggered by Mitochondrial ROS. Experimental Cell Research, 341, 42-53. >https://doi.org/10.1016/j.yexcr.2016.01.014
Wang, H., Peng, W., Ouyang, X., Li, W. and Dai, Y. (2012) Circulating microRNAs as Candidate Biomarkers in Patients with Systemic Lupus Erythematosus. Translational Research, 160, 198-206. >https://doi.org/10.1016/j.trsl.2012.04.002
Bachar-Wikstrom, E., Wikstrom, J.D., Kaiser, N., Cerasi, E. and Leibowitz, G. (2013) Improvement of ER Stress-Induced Diabetes by Stimulating Autophagy. Autophagy, 9, 626-628. >https://doi.org/10.4161/auto.23642
Shi, H., Zhang, Z., Wang, X., Li, R., Hou, W., Bi, W., et al. (2015) Inhibition of Autophagy Induces Il-1β Release from ARPE-19 Cells via ROS Mediated NLRP3 Inflammasome Activation under High Glucose Stress. Biochemical and Biophysical Research Communications, 463, 1071-1076. >https://doi.org/10.1016/j.bbrc.2015.06.060
Apte, R.N., Krelin, Y., Song, X., Dotan, S., Recih, E., Elkabets, M., et al. (2006) Effects of Micro-Environment-and Malignant Cell-Derived Interleukin-1 in Carcinogenesis, Tumour Invasiveness and Tumour-Host Interactions. European Journal of Cancer, 42, 751-759. >https://doi.org/10.1016/j.ejca.2006.01.010
Apte, R.N. and Voronov, E. (2008) Is Interleukin‐1 a Good or Bad ‘Guy’ in Tumor Immunobiology and Immunotherapy? Immunological Reviews, 222, 222-241. >https://doi.org/10.1111/j.1600-065x.2008.00615.x
叶玉妹, 陈隆望, 张万里, 等. NLRP3炎症小体抑制剂MCC950通过抑制Th1/Th17和促进Tregs改善脓毒症小鼠器官损伤[J]. 温州医科大学学报, 2024, 54(3): 190-198.
Shinriki, S., Jono, H., Ueda, M., Ota, K., Ota, T., Sueyoshi, T., et al. (2011) Interleukin‐6 Signalling Regulates Vascular Endothelial Growth Factor‐C Synthesis and Lymphangiogenesis in Human Oral Squamous Cell Carcinoma. The Journal of Pathology, 225, 142-150. >https://doi.org/10.1002/path.2935
Shintani, S., Ishikawa, T., Nonaka, T., Li, C., Nakashiro, K., Wong, D.T.W., et al. (2004) Growth-Regulated Oncogene-1 Expression Is Associated with Angiogenesis and Lymph Node Metastasis in Human Oral Cancer. Oncology, 66, 316-322. >https://doi.org/10.1159/000078333
史国军, 王永生, 何国浓, 等. 冬凌草甲素逆转BEL-7402/5-FU化疗耐药作用的体内研究[J]. 浙江中西医结合杂志, 2023, 33(10): 888-892, 908.
Scuderi, S.A., Casili, G., Basilotta, R., Lanza, M., Filippone, A., Raciti, G., et al. (2021) NLRP3 Inflammasome Inhibitor BAY-117082 Reduces Oral Squamous Cell Carcinoma Progression. International Journal of Molecular Sciences, 22, Article 11108. >https://doi.org/10.3390/ijms222011108
Zi, M., Chen, X.Y., Yang, C., Su, X.D., Lv, S.X. and Wei, S.C. (2022) Improved Antitumor Immunity of Chemotherapy in OSCC Treatment by Gasdermin-E Mediated Pyroptosis. Apoptosis, 28, 348-361. >https://doi.org/10.1007/s10495-022-01792-3
Yang, J., Ren, X., Zhang, L., Li, Y., Cheng, B. and Xia, J. (2018) Oridonin Inhibits Oral Cancer Growth and PI3K/Akt Signaling Pathway. Biomedicine&Pharmacotherapy, 100, 226-232. >https://doi.org/10.1016/j.biopha.2018.02.011
李雯. 卡瑞利珠单抗联合DDP化疗方案对晚期非小细胞肺癌的疗效[J]. 吉林医学, 2024, 45(5): 1149-1152.