acm Advances in Clinical Medicine 2161-8712 2161-8720 beplay体育官网网页版等您来挑战! 10.12677/acm.2024.1461941 acm-90595 Articles 医药卫生 添加i-PRF的不同静电纺丝方式对肌腱干细胞分化的影响
Effects of Different Electrospinning Methods with i-PRF on the Differentiation of Tendon Stem Cells
梁同达 1 2 于腾波 2 青岛大学医学部,山东 青岛 青岛大学运动与康复研究院,山东 青岛 06 06 2024 14 06 1495 1502 28 5 :2024 23 5 :2024 23 6 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 目的:本实验主要为了研究可注射型富血小板纤维蛋白通过普通静电纺丝与同轴静电纺丝两种方式添加到纳米纤维中后,对于肌腱干细胞分化的影响。方法:已知富血小板纤维蛋白有着促进肌腱–骨愈合的作用。本研究通过两种不同静电纺丝方式,制备了两种纳米纤维支架。实验①组:普通静电纺丝:以体积比等于3:1的乙酸甲酸为溶剂,将i-PRF和PCL (聚酯纤维)分别溶解后进行静电纺丝。实验②组:同轴静电纺丝:以体积比为等于3:1的乙酸甲酸为溶剂,将PCL (聚酯纤维)溶解作为壳层而i-PRF作为芯层,进行同轴静电纺丝。之后我们在材料上进行肌腱干细胞的种植,并在第3、7天行CCK-8检测;另外在第7天我们进行了RunX2和Tenascin C的荧光检测,通过两个实验验证两种材料对肌腱干细胞分化的影响。结果:CCK-8实验结果显示肌腱干细胞在两种材料上均可增殖,3天时,对照组及两实验组无明显差异,7天时,对照组OD值高于两实验组,两实验组无明显差异,我们考虑是材料诱导肌腱干细胞进行了分化,故增殖减少。7天时,免疫荧光结果显示,同轴静电纺丝组的RunX2和Tenascin C荧光强度更高,与普通静电纺丝组有着明显差异(p < 0.05, p < 0.01),即该组对肌腱干细胞分化有着更明显的促进作用。结论:同轴静电纺丝相比普通静电纺丝能更好地保留i-PRF的生物活性,能更好地诱导肌腱干细胞的成骨和成肌腱分化,对于负载生物活性物质的纳米纤维支架制备提供一种新的思路。
Objective: the main purpose of this study was to study the effect of injectable platelet-rich fibrin on the differentiation of tendon stem cells after being added to nanofibers by ordinary electrospinning and coaxial electrospinning. Methods: it is known that platelet-rich fibrin can promote tendon-bone healing. In this study, two kinds of nanofiber scaffolds were prepared by two different electrospinning methods. Experimental group 1: ordinary electrospinning: i-PRF and PCL (polyester fiber) were dissolved in acetic acid formic acid equal to 3:1 by volume and then electrospun. Experimental group 2: coaxial electrospinning was carried out with acetic acid formic acid (volume ratio = 3:1) as solvent, PCL (polyester fiber) as shell and i-PRF as core. After that, we implanted tendon stem cells on the material, and detected CCK-8 on the 3 rdand 7 thday. In addition, on the 7 thday, we carried out the fluorescence detection of RunX2 and Tenascin C, and verified the effect of the two materials on the differentiation of tendon stem cells through two experiments. Results: the results of CCK-8 experiment showed that tendon stem cells could proliferate on both materials. On the 3 rdday, there was no significant difference between the control group and the two experimental groups. On the 7 thday, the OD value of the control group was higher than that of the two experimental groups, and there was no significant difference between the two experimental groups. We considered that the material induced the differentiation of tendon stem cells, so the proliferation decreased. On the 7 thday, the immunofluorescence results showed that the fluorescence intensity of RunX2 and Tenascin C in the coaxial electrospinning group was significantly higher than that in the ordinary electrospinning group (p < 0.05, p < 0.01), that is, this group could promote the differentiation of tendon stem cells more obviously. Conclusion: compared with conventional electrospinning, coaxial electrospinning can better retain the biological activity of i-PRF and better induce osteogenesis and tendon differentiation of tendon stem cells. This provides a new idea for the preparation of nanofiber scaffolds loaded with bioactive substances.
可注射型富血小板纤维蛋白,同轴静电纺丝,肌腱干细胞,分化
i-PRF
Coaxial Electrospinning Tendon Stem Cell Differentiate
1. 引言

肌肉骨骼疾病被定义为四肢、背部关节或组织的任何损伤或结构紊乱。据世界卫生组织称,肌肉骨骼损伤影响全球数亿人的生活,是造成长期疼痛、创伤和身体残疾的主要原因 [1] 。软组织损伤占肌肉骨骼损伤总数的40%~50%,通常是软骨、韧带和肌腱损伤的结果。肌腱–骨界面内可分为四个连续的区域:肌腱/韧带、非矿化纤维软骨、矿化纤维软骨和软骨下骨,界面上的矿物质含量逐渐增加 [2] 。由于此区域特殊的生物成分组成、微观结构和力学特性,手术重建断裂的韧带/肌腱经常会产生性能不佳的新的骨–移植界面,导致手术效果差问题的总体增加。

由此看来,能够帮助损伤修复的新型材料的研发显得尤为重要。近年来,i-PRF作为一种新型自体血提取物映入眼帘,其独特的物理结构及富含多种生物因子成为修复损伤的优秀产物 [3] - [7] 。而富血小板纤维蛋白也被证实对于肌腱–骨修复有着促进作用 [8] [9] 。由此,如何将生物活性物质与纳米纤维支架结合成为我们研究的方向,基于目前存在的静电纺丝方式,我们使用两种方式制备支架,并评估他们各自对于肌腱干细胞分化的影响,发现同轴静电纺丝能更好的保留生物活性物质的活性,为后续选择同轴静电纺丝制备负载生物活性物质的纳米纤维支架提供数据支持。

2. 材料与方法 2.1. 材料与仪器

新西兰大白兔(购自青岛康大爱博生物科技有限公司),雄性,2月龄,体重约2.5~3.0 kg。

PCL (Sigma),甲酸(Solarbio),乙酸(Solarbio),磁力搅拌器(美国,Sioma-AldrCh公司),磁力搅拌子(比克曼),ET静电纺丝一体机(北京永康乐业科技发展有限公司),超声波分散仪(新芝生物),电子天平(德国,Sartorius)电子显微镜(Hitachi)免疫荧光相关抗体:Phalloidin-iFluor 488抗体(abcom)、兔抗兔Tenascin C一抗(biobyt),羊抗兔Alexa Fluor-488二抗(HUABIO)、兔抗兔Runx2一抗(博奥森)、羊抗兔Alexa Fluor-594二抗(Solarbio)、DAPI (Solarbio)。Cell counting kit-8 (Solarbio),FBS (Gibco),cell medium DMEM (Solarbio),PBS (Solarbio)。

2.2. 实验方法

依据文献提取肌腱干细胞:取静脉采血的新西兰大白兔的髌腱、跟腱;在含10%双抗的PBS中放入肌腱组织,消毒5分钟,PBS液润洗3次;在肌腱组织中加入1 ml 0.05%trypsin-EDTA消化液消化,在孵育箱中消化5分钟,期间可行吹打,促使更好分离;加入完全培养基终止蛋白酶消化反应;把分离后的肌腱割成小块,加入肌腱消化液,在培养箱消化2小时,每隔半小时取出培养瓶,在无菌台上放置30秒,为室温;消化好后,使用70 um过滤器,过滤获得初步提取的兔肌腱干细胞;将获取的细胞,转移到新培养瓶,加入培养基,培养;每3天换液,当细胞铺满培养瓶80%时,可按照1:3传代;传代:使用移液枪将旧培养基移除,加入PBS润洗1次,再向培养瓶中加入0.05%的胰酶1 ml消化半分钟,消化后再加入等量的完全培养基终止反应,调整离心机参数为1000 rpm离心5 min。之后离心管中可看到上层为清液,下层为沉淀的分层情况,仔细将上层清液移除,不要吸到下方沉淀,之后再向离心管中加入完全培养基重悬后传代,于培养箱孵育。我们实验通常取用第2~4代的干细胞来完成后续实验( 图1(A) )。

i-PRF制备:自兔耳缘静脉取血10 ml,随即放入离心机1000 rpm,3 min,即可得到分层溶液,上层淡黄色液体即为i-PRF [10] ,另备无菌试管加入100 U肝素,将制得的i-PRF加入防止其凝固。

同轴静电纺丝:使用体积比等于3:1的乙酸甲酸5 ml为溶剂,加入11%wt的PCL,在磁力搅拌器上搅拌90 min,至完全溶解,此作为壳层溶液;取i-PRF为芯层溶液进行同轴静电纺丝,参数如下:电压16 kv,壳层溶液流速1 ml/h,芯层溶液0.1 ml/h,接收距离为15 cm ( 图1(B) )。

普通静电纺丝:使用体积比等于3:1的乙酸甲酸5 ml为溶剂,将制得的i-PRF取0.5 ml加入其中,于磁力搅拌器搅拌60 min至其完全溶解,再加入11%wt的PCL,于磁力搅拌器上搅拌90 min,至全部溶解,在电压为16 kv,流速为1.1 ml/h,接收距离为15 cm的条件下纺丝1 h,并收集( 图1(C) )。

Figure 1. Morphology of tendon stem cells and electron microscopic photos of nanofiber scaffolds--图1. 肌腱干细胞形态及纳米纤维支架电镜照片--

将纤维材料用生物胶粘到与其大小一致的圆形破片上,然后做好标记分别放于24孔板中的不同区域。于含有75%酒精的酒精锅中熏蒸6小时,之后再于紫外线照射环境中照射1小时进行灭菌。取出24孔板,依次使用PBS、普通低糖DMEM润洗纤维材料2次,再将500 ul配置好的完全培养基加入到24孔板中,之后放入培养箱,给肌腱干细胞一个湿润的环境。自培养箱中取出培养瓶,使用移液枪将旧培养基移除,加入PBS润洗1次,再向培养瓶中加入0.05%的胰酶1 ml消化半分钟,消化后再加入等量的完全培养基终止反应,调整离心机参数为1000 rpm离心5 min。仔细将上层清液移除,不要吸到下方沉淀,之后再向离心管中加入3 ml完全培养基,通过血细胞计数板计算出密度。从培养箱中取出24孔板,在24孔板中按照1 × 104/孔的浓度种植细胞,之后再向各孔中加入完全培养基,使各孔培养基含量在700 μm。于第3、7天行CCK-8实验,配制含10%CCK-8试剂的培养基,取出细胞培养瓶,使用移液枪将旧的培养基吸除,使用PBS将培养瓶润洗1次,在避光条件下每孔中加入400 ml含10%CCK-8试剂的新鲜培养基,之后再培养箱中孵育2小时。时间到后,轻轻摇晃15 min,使其充分混匀,取新的96孔板,吸取对应的24孔板中100 ul液体,做好标记。于450 nm处,使用酶标仪检测相对应的OD值。收集数据并分析。另第7天行蛋白免疫荧光检测,24孔板细胞培养7天后,吸出培养基,PBS洗涤3次;4%戊二醛固定10 min,PBS洗涤3次,注意配合枪头吹打;0.1%Triton X-100室温通透5 min,PBS洗3次,注意配合枪头吹打;1%BSA封闭1 h,PBS洗涤3次,注意配合枪头吹打;相同材料组一个加入兔抗兔Tenascin C一抗,另一个加入兔抗兔Runx2一抗,避光孵育,4℃过夜;0.1%Tween20洗一次,PBS洗涤2次,每次5 min,注意配合枪头吹打;加入兔抗兔Tenascin C一抗的加羊抗兔Alexa Fluor-488二抗;加入兔抗兔Runx2一抗的加羊抗兔Alexa Fluor-594二抗,避光室温孵育1 h;吸掉二抗;PBS洗涤3次,每次5 min注意配合枪头吹打;DAPI避光浸染10 min,PBS冲洗3次;荧光显微镜下观察。RunX2在荧光中显示为红色,Tenascin C显示为绿色,拍摄荧光图片使用ImageJ软件分析平均荧光强度。

实验①组:普通静电纺丝:n = 9 (第3、7天行CCK-8实验,第7天行蛋白免疫荧光检测);

实验②组:同轴静电纺丝:n = 9 (第3、7天行CCK-8实验,第7天行蛋白免疫荧光检测);

对照组:即空白对照,只含有普通圆形玻片(n = 6,第3、7天行CCK-8实验)。

因已知PRF对肌腱干细胞有促分化作用,因此不对空白对照和单纯PCL做荧光分析 [8] [9]

使用SPSS统计软件进行数据分析,每组间使用配对样本t检验,*(p < 0.05),**(p < 0.01),组间有统计学差异。

3. 结果 3.1. CCK-8实验

在CCK-8实验中,第3天时,对照组略高于两实验组,而普通静电纺丝组略高于同轴静电纺丝组组间无统计学差异;第7天时,对照组显著高于两实验组,两实验组组间无明显差异。出现这种情况的原因结合免疫荧光来看,应该是两实验组因添加i-PRF导致肌腱干细胞出现分化,故而细胞增殖减低( 图2(A) 图2(B) )。

3.2. 蛋白免疫荧光

从第7天做的蛋白免疫荧光及ImageJ软件处理结果来看,同轴静电纺丝组( 图3(B) 图3(D) )相比于普通静电纺丝组( 图3(A) 图3(C) )中肌腱干细胞的RunX2、Tenascin C表达更多,平均荧光强度更高( 表1 ),组间差异具有统计学意义( 图4 ),由此可见,添加i-PRF的同轴静电纺丝相比于普通静电纺丝,对于肌腱干细胞的分化促进作用更大,更有益于肌腱–骨界面组织损伤修复。

Figure 2. Experimental result of CCK-8--图2. CCK-8结果-- Figure 3. Protein immunofluorescence results--图3. 蛋白免疫荧光结果-- Figure 4. Analysis of ImageJ--图4. ImageJ分析-- <xref></xref>Table 1. Analysis of ImageJ average fluorescence intensityTable 1. Analysis of ImageJ average fluorescence intensity 表1. ImageJ平均荧光强度分析

Area

Mean (average)

Min

Max

IntDen (average)

2238016

17.065

4

69

38,191,743

2238016

23.476

6

85

52,540,454

2238016

11.226

1

88

25,123,968

2238016

17.264

5

83

38,636,235

4. 讨论

随着人们生活水平的提高,在一些运动损伤后,人们对于损伤修复有着更高的期望,然而天然肌腱–骨界面组织的特殊结构,给肩袖损伤、交叉韧带断裂等患者康复带来了困难,据报道,有不少前交叉韧带损伤患者因为术后肌腱–骨界面的瘢痕愈合导致重建处肌腱移植物融合失败,这不仅给患者身体上带来痛苦,也在经济上带来了负担,这就要求我们临床大夫提高手术技巧的同时,还需要研发一些促进修复的新型材料 [11] 。近年来,自体血提取物有着不错的发展,例如:PRP、PRF、P-PRP等等 [12] 。这就告诉我们,可以将自体血提取物与工程学相结合,制备更安全、效果更好的新型纳米支架,在为细胞生长提供空间的同时,还可以释放生物活性因子,促进细胞增殖分化,用于快速修复损伤,早期功能重建与恢复等。给肌腱干细胞加以干预,促使在损伤靠近肌腱处表达更多成肌腱相关蛋白,靠近骨质处表达更多成骨相关蛋白,使得损伤修复后可以更大程度还原天然肌腱–骨界面,达到更好的修复效果。

本研究中,我们对比了传统静电纺丝和同轴静电纺丝对于生物活性物质活性的保留,不难发现,如果想在纳米纤维中添加生物纺丝活性物质,同轴静电纺丝效果会更好,另外,同轴静电纺丝的壳核结构可以达到缓释的作用,这就可以使生物活性物质持续平稳的释放 [13] [14] 。如果是要负载药物,想要达到缓释的效果,也可以通过这种纺丝方式来达到 [15] - [18]

本研究也存在着局限性,比如降解、缓释等的测定;观察时间较短;后面的工作中,这些也是我们要完善的重点。

5. 研究结论

本实验的研究结果表明,在无活性材料与富血小板纤维蛋白结合中,同轴静电纺丝相比于普通静电纺丝能较好的保留生物活性物质的活性成分,这为之后材料负载生物活性物质制备方式的选择上提供了理论基础。另外,此种材料通过改变制备的长度、厚度、形状也可用于肌腱–骨界面损伤中,例如肩袖损伤、交叉韧带损伤等。这也是我们后续可以研究的方向,期望在临床应用上体现价值。

NOTES

*通讯作者。

References Cao, F., Li, D.-P., Wu, G.-C., He, Y.-S., Liu, Y.-C., Hou, J.-J., et al. (2023) Global, Regional and National Temporal Trends in Prevalence for Musculoskeletal Disorders in Women of Childbearing Age, 1990-2019: An Age-Period-Cohort Analysis Based on the Global Burden of Disease Study 2019. Annals of the Rheumatic Diseases, 83, 121-132. >https://doi.org/10.1136/ard-2023-224530 Bianchi, E., Faccendini, A., Del Favero, E., Ricci, C., Caliogna, L., Vigani, B., et al. (2022) Topographical and Compositional Gradient Tubular Scaffold for Bone to Tendon Interface Regeneration. Pharmaceutics, 14, Article 2153. >https://doi.org/10.3390/pharmaceutics14102153 Farshidfar, N., Amiri, M.A., Jafarpour, D., Hamedani, S., Niknezhad, S.V. and Tayebi, L. (2022) The Feasibility of Injectable PRF (I-PRF) for Bone Tissue Engineering and Its Application in Oral and Maxillofacial Reconstruction: From Bench to Chairside. Biomaterials Advances, 134, Article 112557. >https://doi.org/10.1016/j.msec.2021.112557 Gollapudi, M., Bajaj, P. and Oza, R.R. (2022) Injectable Platelet-Rich Fibrin—A Revolution in Periodontal Regeneration. Cureus, 14, e28647. >https://doi.org/10.7759/cureus.28647 Kosmidis, K., Ehsan, K., Pitzurra, L., Loos, B. and Jansen, I. (2023) An in vitro Study into Three Different PRF Preparations for Osteogenesis Potential. Journal of Periodontal Research, 58, 483-492. >https://doi.org/10.1111/jre.13116 Lektemur Alpan, A., Torumtay Cin, G., Kızıldağ, A., Zavrak, N., Özmen, Ö., Arslan, Ş., et al. (2023) Evaluation of the Effect of Injectable Platelet-Rich Fibrin (i-PRF) in Wound Healing and Growth Factor Release in Rats: A Split-Mouth Study. Growth Factors, 42, 36-48. >https://doi.org/10.1080/08977194.2023.2289375 Miron, R.J., Gruber, R., Farshidfar, N., Sculean, A. and Zhang, Y. (2023) Ten Years of Injectable Platelet-Rich Fibrin. Periodontology 2000, 94, 92-113. >https://doi.org/10.1111/prd.12538 Wong, C.-C., Yeh, Y.-Y., Yang, T.-L., Tsuang, Y.-H. and Chen, C.-H. (2020) Augmentation of Tendon Graft-Bone Tunnel Interface Healing by Use of Bioactive Platelet-Rich Fibrin Scaffolds. The American Journal of Sports Medicine, 48, 1379-1388. >https://doi.org/10.1177/0363546520908849 Celikten, M., Sahin, H., Senturk, G.E., Bilsel, K., Pulatkan, A., Kapicioglu, M., et al. (2024) The Effect of Platelet-Rich Fibrin, Platelet-Rich Plasma, and Concentrated Growth Factor in the Repair of Full Thickness Rotator Cuff Tears. Journal of Shoulder and Elbow Surgery, 33, E261-E277. >https://doi.org/10.1016/j.jse.2023.09.028 Miron, R.J., Fujioka-Kobayashi, M., Hernandez, M., Kandalam, U., Zhang, Y., Ghanaati, S., et al. (2017) Injectable Platelet Rich Fibrin (i-PRF): Opportunities in Regenerative Dentistry? Clinical Oral Investigations, 21, 2619-2627. >https://doi.org/10.1007/s00784-017-2063-9 Tian, B., Zhang, M. and Kang, X. (2023) Strategies to Promote Tendon-Bone Healing after Anterior Cruciate Ligament Reconstruction: Present and Future. Frontiers in Bioengineering and Biotechnology, 11, Article 1104214. >https://doi.org/10.3389/fbioe.2023.1104214 Anitua, E., Allende, M. and Alkhraisat, M.H. (2022) Unravelling Alveolar Bone Regeneration Ability of Platelet-Rich Plasma: A Systematic Review with Meta-Analysis. Bioengineering, 9, Article 506. >https://doi.org/10.3390/bioengineering9100506 Shafizadeh, S., Heydari, P., Zargar Kharazi, A. and Shariati, L. (2024) Coaxial Electrospun PGS/PCL and PGS/PGS-PCL Nanofibrous Membrane Containing Platelet-Rich Plasma for Skin Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 35, 482-500. >https://doi.org/10.1080/09205063.2023.2299073 Rastegar, A., Mahmoodi, M., Mirjalili, M. and Nasirizadeh, N. (2021) Platelet-Rich Fibrin-Loaded PCL/Chitosan Core-Shell Fibers Scaffold for Enhanced Osteogenic Differentiation of Mesenchymal Stem Cells. Carbohydrate Polymers, 269, Article 118351. >https://doi.org/10.1016/j.carbpol.2021.118351 Wang, Y. and Xu, L. (2018) Preparation and Characterization of Porous Core-Shell Fibers for Slow Release of Tea Polyphenols. Polymers, 10, Article 144. >https://doi.org/10.3390/polym10020144 Zandi, N., Lotfi, R., Tamjid, E., Shokrgozar, M.A. and Simchi, A. (2020) Core-Sheath Gelatin Based Electrospun Nanofibers for Dual Delivery Release of Biomolecules and Therapeutics. Materials Science and Engineering: C, 108, Article 110432. >https://doi.org/10.1016/j.msec.2019.110432 Esmaeili, A. and Haseli, M. (2017) Optimization, Synthesis, and Characterization of Coaxial Electrospun Sodium Carboxymethyl Cellulose-Graft-Methyl Acrylate/Poly(Ethylene Oxide) Nanofibers for Potential Drug-Delivery Applications. Carbohydrate Polymers, 173, 645-653. >https://doi.org/10.1016/j.carbpol.2017.06.037 Iqbal, S., Rashid, M., Arbab, A. and Khan, M. (2017) Encapsulation of Anticancer Drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and in Vitro Testing for Sustained and Targeted Therapy. Journal of Biomedical Nanotechnology, 13, 355-366. >https://doi.org/10.1166/jbn.2017.2353
Baidu
map