Figure 1. The representation of the linguistic uncertain Z-number in a rectangular coordinate system--图1. 语言不确定Z-Number在矩形坐标系中的表示--2.3. 基于矩形坐标系的语言不确定Z-Number的计算
References
Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 8, 338-353. >https://doi.org/10.1016/S0019-9958(65)90241-X
Zimmermann, H.J. (2010) Fuzzy Set Theory. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 317-332. >https://doi.org/10.1002/wics.82
Zadeh, L.A. (2011) A Note on Z-Numbers. Information Sciences, 181, 2923-2932. >https://doi.org/10.1016/j.ins.2011.02.022
Ahmadov, S.A. (2022) Z+-Number Based Alternatives Selection in Investment Problem. In: 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence, Springer International Publishing, Berlin, 43-50. >https://doi.org/10.1007/978-3-030-92127-9_10
Banerjee, R. and Pal, S.K. (2015) Z*-Numbers: Augmented Z-Numbers for Machine-Subjectivity Representation. Information Sciences, 323, 143-178. >https://doi.org/10.1016/j.ins.2015.06.026
Tian, Y., Mi, X., Ji, Y. and Kang, B. (2021) ZE-Numbers: A New Extended Z-Numbers and Its Application on Multiple Attribute Group Decision Making. Engineering Applications of Artificial Intelligence, 101, Article ID: 104225. >https://doi.org/10.1016/j.engappai.2021.104225
Jia, Q., Hu, J., He, Q., Zhang, W. and Safwat, E. (2021) A Multicriteria Group Decision-Making Method Based on AIVIFSs, Z-Numbers, and Trapezium Clouds. Information Sciences, 566, 38-56. >https://doi.org/10.1016/j.ins.2021.02.042
Wang, J.Q., Wu, J.T., Wang, J., Zhang, H.Y. and Chen, X.H. (2014) Interval-Valued Hesitant Fuzzy Linguistic Sets and Their Applications in Multi-Criteria Decision-Making Problems. Information Sciences, 288, 55-72. >https://doi.org/10.1016/j.ins.2014.07.034
Wang, J.Q., Cao, Y.X. and Zhang, H.Y. (2017) Multi-Criteria Decision-Making Method Based on Distance Measure and Choquet Integral for Linguistic Z-Numbers. Cognitive Computation, 9, 827-842. >https://doi.org/10.1007/s12559-017-9493-1
Chen, B., Cai, Q., Wei, G. and Mo, Z. (2023) Novel Aczel-Alsina Operations-Based Linguistic Z-Number Aggregation Operators and Their Applications in Multi-Attribute Group Decision-Making Process. Engineering Applications of Artificial Intelligence, 124, Article ID: 106541. >https://doi.org/10.1016/j.engappai.2023.106541
Peng, H.G., Zhang, H.Y., Wang, J.Q. and Li, L. (2019) An Uncertain Z-Number Multicriteria Group Decision-Making Method with Cloud Models. Information Sciences, 501, 136-154. >https://doi.org/10.1016/j.ins.2019.05.090
Jia, Q. and Hu, J. (2022) A Novel Method to Research Linguistic Uncertain Z-Numbers. Information Sciences, 586, 41-58. >https://doi.org/10.1016/j.ins.2021.11.016
Zadeh, L.A. (1975) The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—II. Information Sciences, 8, 301-357. >https://doi.org/10.1016/0020-0255(75)90046-8
Zadeh, L.A. (1975) The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—I. Information Sciences, 8, 199-249. >https://doi.org/10.1016/0020-0255(75)90036-5
Zadeh, L.A. (1975) The Concept of a Linguistic Variable and Its Application to Approximate Reasoning-III. Information Sciences, 9, 43-80. >https://doi.org/10.1016/0020-0255(75)90017-1
Neyman, S.N., Sitohang, B. and Sutisna, S. (2013) Reversible Fragile Watermarking Based on Difference Expansion Using Manhattan Distances for 2D Vector Map. Procedia Technology, 11, 614-620. >https://doi.org/10.1016/j.protcy.2013.12.236
Malkauthekar, M.D. (2013) Analysis of Euclidean Distance and Manhattan Distance Measure in Face Recognition. 3rd International Conference on Computational Intelligence and Information Technology (CIIT 2013), Mumbai, 18-19 October 2013, 503-507. >https://doi.org/10.1049/cp.2013.2636
Zheng, X.J. (2014) A Connectivity Graph Generation Approach for Manhattan Path Calculation in Detailed Facility Layout. Applied Mathematics and Computation, 237, 238-251. >https://doi.org/10.1016/j.amc.2014.03.100
Chiu, W.Y., Yen, G.G. and Juan, T.K. (2016) Minimum Manhattan Distance Approach to Multiple Criteria Decision Making in Multi-Objective Optimization Problems. IEEE Transactions on Evolutionary Computation, 20, 972-985. >https://doi.org/10.1109/TEVC.2016.2564158
Wang, C., Yang, J. and Zhang, B. (2024) A Fault Diagnosis Method Using Improved Prototypical Network and Weighting Similarity-Manhattan Distance with Insufficient Noisy Data. Measurement, 226, Article ID: 114171. >https://doi.org/10.1016/j.measurement.2024.114171
Su, W., Luo, D., Zhang, C. and Zeng, S. (2022) Evaluation of Online Learning Platforms Based on Probabilistic Linguistic Term Sets with Self-Confidence Multiple Attribute Group Decision Making Method. Expert Systems with Applications, 208, Article ID: 118153. >https://doi.org/10.1016/j.eswa.2022.118153
Banadkouki, M.R.Z. (2023) Selection of Strategies to Improve Energy Efficiency in Industry: A Hybrid Approach Using Entropy Weight Method and Fuzzy TOPSIS. Energy, 279, Article ID: 128070. >https://doi.org/10.1016/j.energy.2023.128070
游杰. 基于熵权法和偏好关系的犹豫模糊多属性决策方法研究[D]: [硕士学位论文]. 昆明: 云南师范大学, 2023.
张甜, 阎红灿. 基于熵权法的多属性决策算法优化及应用[J]. 华北理工大学学报(自然科学版), 2022, 44(1): 82-88.