orf Operations Research and Fuzziology 2163-1476 2163-1530 beplay体育官网网页版等您来挑战! 10.12677/orf.2024.143342 orf-90444 Articles 数学与物理 国际黄金、原油和天然气价格之间的动态协整关系研究
Research on the Dynamic Cointegration Relationship among International Gold, Crude Oil, and Natural Gas Prices
张凯歌 上海理工大学管理学院,上海 04 06 2024 14 03 1096 1106 11 4 :2024 22 4 :2024 22 6 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 本研究关注全球化背景下国际大宗市场动态,特别是原油、黄金和天然气这三种重要大宗商品价格之间的关联性。通过对比分析2009年1月至2020年2月和2009年1月至2023年12月两个时间段的价格数据,探讨了这些商品之间协整关系的动态变化。研究结果显示,2009年1月至2023年12月的时段内,黄金、原油与天然气价格之间存在显著的协整关系,其中黄金与原油价格正相关,而与天然气价格负相关。然而,在较短的时间段内(2009~2020年),这种协整关系并不显著。导致这种情况发生的原因可能受到全球经济不稳定性、新冠疫情、俄乌冲突等突发事件的影响。这一发现对投资者和政策制定者具有重要指导意义,提醒他们需动态地看待大宗商品价格关系,并考虑多种因素的影响。本研究为理解全球能源市场动态提供了新的视角,并为未来的决策提供了有价值的参考。
This study focuses on the dynamics of the international commodity market in the context of globalization, specifically examining the correlation between the prices of three important commodities: crude oil, gold, and natural gas. By comparing and analyzing price data from two time periods, January 2009 to February 2020 and January 2009 to December 2023, the study explores the dynamic changes in the cointegration relationship between these commodities. The results indicate a significant cointegration relationship between the prices of gold, crude oil, and natural gas during the period from January 2009 to December 2023. Specifically, there is a positive correlation between gold and crude oil prices, and a negative correlation between gold and natural gas prices. However, this cointegration relationship is not significant during the shorter time period from 2009 to 2020. The reasons for this change may be attributed to various factors, including global economic instability, the COVID-19 pandemic, and geopolitical events such as the Russia-Ukraine conflict. These findings have important implications for investors and policymakers, highlighting the need to dynamically assess commodity price relationships and consider multiple influencing factors. Overall, this study provides a new perspective for understanding the dynamics of the global energy market and offers valuable insights for future decision-making.
大宗市场,协整关系,新冠疫情,俄乌冲突
Bulk Market
Cointegration Relationship COVID-19 Russia-Ukraine Conflict
1. 引言

随着全球化的快速推进,国际能源市场对于全球经济发展的驱动力日益凸显。原油,被誉为工业的血液,其价格的变动对全球各国的经济增长、通胀率和国际贸易均衡产生直接且深远的影响。 图1 所示,2022年全球一次能源消费总量实现了1.1%的增长,达到604.04艾焦,相较于2019年疫情前还提升了约3%。如 图2 图3 所示,在这一能源消费结构中,化石燃料仍占据主导地位,占比高达81.8%。进一步细分,石油、天然气和煤炭的消费占比分别为31.57%、23.49%和26.73%。由此可见,化石燃料在近年来依然是推动世界经济发展的关键能源。同时,值得注意的是,原油和天然气在金融市场中也被广泛交易,投资者在活跃的能源衍生品市场中寻找交易机会时,必须对这两个市场的价格波动特性进行全面的考量,以提升投资收益率 [1]

数据来源:能源研究院《世界能源统计年鉴》(2023)。--Figure 1. Global primary energy consumption-- 数据来源:能源研究院《世界能源统计年鉴》(2023)。--Figure 2. The proportion of primary energy consumption in 2022-- 数据来源:能源研究院《世界能源统计年鉴》(2023)。--Figure 3. The proportion of primary energy consumption in 2021--

与此同时,黄金因其避险属性而备受瞩目,其价格在全球经济不稳定和金融市场动荡时常常展现出独特的走势,从而成为投资者和中央银行重要的储备选择 [2] 。另一方面,天然气作为一种清洁且高效的能源资源,在全球能源结构转型的趋势下,其需求量不断攀升,对能源市场和气候政策均产生了显著的影响。随着全球经济的日益融合和能源结构的深度调整,原油、黄金和天然气的定价机制日趋复杂。近年来,大宗商品价格的频繁波动已成为常态,这其中涉及地缘政治风险、供需动态变化、货币政策调整以及科技进步等多重因素的交织影响 [3] 。值得注意的是,全球大宗商品价格的不稳定已成为当前金融市场面临的一个重要风险因素。特别是在全球经济一体化的今天,这种价格波动对各国经济,尤其是发展中国家的经济影响更为突出 [4] 。因此,对原油、黄金和天然气的市场动态及其价格之间的关联性进行深入研究,不仅能够帮助我们更准确地把握全球经济的走势,还能为投资决策提供有力的支持,并为政策制定者提供科学的决策参考。

2. 文献综述

国际能源价格的关系一直是学术界热衷的研究话题,普遍观点认为天然气与原油价格之间存在长期协整关系。Bachmeier和Griffin在2006年建立误差修正模型对原油与天然气在美国的价格之间进行了研究,发现原油与天然气价格在美国市场存在长期关系 [5] 。2010年Ramberg与Parsons通过构建条件ECM,进而对天然气与原油之间的长期协整关系进行检验,发现2006年天然气与原油二者之间存在的协整关系可能是因为联合循环发电技术的产生 [6] 。在2012年Erdős对2009年北美天然气与原油价格关系进行研究,结果表明在2009年北美原油市场价格与天然气市场价格之间的关系出现了偏离,可能是因为北美页岩气技术的发酵 [7] 。孙仁金等(2020)通过协整检验及VAR模型对原油、天然气及煤炭对价格指数的关系进行研究,得出原油价格与天然气价格长期正相关且原油、天然气和煤炭价格三者之间存在着长期的均衡关系 [8] 。K. S. Sujit等(2021)通过自回归分布滞后模型对2015年3月19日至2022年10月8日期间的国际石油和黄金价格、汇率和股票市场指数进行研究,发现黄金、石油和股票市场之间没有任何协整,但非线性方法最适合理解这些市场的动态 [9] 。Kumar Suresh等(2021)对1997年1月至2019年6月的印度天然气价格、原油价格、黄金价格、汇率和股票市场指数的每周数据使用非线性自回归分布滞后模型进行研究,发现黄金在短期和长期内都是天然气和原油的统计学显着变量 [10] 。Kumar Suresh等(2021)根据1997年1月至2019年12月的每日数据发现原油和汇率波动率不会影响天然气波动率,而是受股票和黄金价格波动的影响 [11]

由于近些年不论是新冠疫情还是俄乌冲突等边缘政治冲突频发,国际能源市场波动进一步加大,本文在以往对黄金、原油和天然气的关系的研究的基础上,进一步对2008年金融危机后国际黄金、原油和天然气的价格关系进行研究。

3. 模型及数据选取 3.1. VAR模型

向量自回归(VAR)模型与其他依赖外生变量的联立方程模型有着显著的区别。该模型的特点在于,其所有变量均通过它们自身的历史数据、其他内生变量的过去值,以及随机误差项来进行解释。为了深入探究国际黄金、原油与天然气价格指数之间的内在联系,本研究选择了VAR模型作为分析工具。值得一提的是,VAR模型在构建时并不严格依赖于特定的经济理论,这为其在选择解释变量时提供了灵活性。这种灵活性和可扩展性使得我们能够更全面地揭示变量之间的动态关系,从而提高研究结果的准确性和可信度。通过运用VAR模型,我们可以更深入地理解国际能源价格之间的相互作用机制,为相关决策和政策制定提供坚实的理论基础。VAR(p)模型的一般数学表达式可以描述为:

Y t = C + Θ 1 Y t 1 + + Θ p Y t p + ε t (1)

其中, E ( ε t ) = 0 E ( ε t ε t ) = { Ω ( t = τ ) 0 ( t τ ) ,并且不同时刻 ε t 相互独立分布,服从正态分布则该式为p-阶向量自回归模型,满足该模型的随机过程为p-阶向量自回归过程,记为VAR(p)。

3.2. 变量选取与数据处理

本研究采用了世界黄金协会每日公布的黄金价格数据,并从中选取每月第一天的数据作为月度代表,标记为GOLDP。该协会是黄金行业的领军组织,致力于提升黄金市场的透明度和发展。其提供的黄金数据经过严格验证,具备高度的权威性和专业性。同时,原油和天然气的数据则来源于国际货币基金组织(IMF)公布的世界原油和天然气名义现货价格指数,分别命名为OILP和GASP。这些月度数据详细且全面,为分析提供了高精度的时间轴参考。数据以2016年为基准,便于我们按月对比价格变动。在编制该指数时,综合了Dated Brent、West Texas Intermediate (WTI)和Dubai Fateh等多种关键原油价格,同时考虑了欧洲、日本和美国的天然气价格,确保了数据的广泛性和全面性。这些名义现货价格为进口国提供了实时的市场参考,以指导其决策。鉴于2008年全球金融危机对多个领域产生的深远影响,本研究特意从2009年开始收集数据,以避免该特殊时期的干扰。研究样本涵盖了2009年1月至2023年12月的数据,共计15年,180个观测值。为了提升数据的稳定性和可靠性,我们对OILP、GASP和GOLDP三个时间序列进行了对数转换。这种转换不会改变数据的内在关系,但能有效地缩小变量的尺度,使数据更加平稳 [12] 。此外,对数处理还有助于减轻模型中的共线性和异方差性问题。经过这样的处理,我们最终得到了LNOILP、LNGASP和LNGOLDP三个序列。

3.3. 数据描述

图4 图5 分别为2009年1月~2023年12月的原油和天然气的名义现货价格指数变化及黄金价格变化。从 图4 图5 中可以看出,期间黄金价格与原油和天然气的价格指数走势近似,在2009年1月至2019年12月期间原油与天然气的价格趋势接近,黄金价格与原油价格走势接近。但2020年开始三者走势出现分离,主要原因为近些年例如新冠疫情、全球经济面临巨大下行风险以及俄乌冲突等边缘政治问题突出导致。但是从长期来看,三者之间的趋势还是近似的。进一步对2009年1月~2023年12月及2009年1月~2019年12月、2020年1月~2023年12月分别进行协整分析。

数据来源:IMF货币基金组织。--Figure 4. International crude oil and natural gas price index from 2009 to 2023-- 数据来源:世界黄金协会。--Figure 5. International gold prices from 2009 to 2023--
4. 实证研究 4.1. 模型构建

我们首先构建黄金价格、原油及天然气的价格指数的协整方程,构建的长期均衡方程:

LNGOLDP + α 1 LNOILP + α 2 LNGASP + β 1 = ε 1 (2)

其中 α i 为协整系数, β 1 为常数项, ε 1 为残差项, LNGASP 代表天然气价格指数, LNOILP 代表原油价格指数, LNGOLDP 代表黄金价格。

4.2. 2009年至2023年协整分析

首先我们先对2009年1月至2023年12月国际原油、天然气价格指数及黄金进行协整分析,探求自金融危机后至2023年12月三种大宗商品之间的长期协整关系。

对LNGASP、LNOILP、LNGOLDP三个时间序列通过ADF单位根方法进行平稳性检验,由 表1 可以看出,首先,LNGASP、LNOILP和LNGOLDP的ADF值在5%、1%置信度对应的临界值均大于各自对应的ADF值,切其ADF值对应的P值均大于0.05,故LNGASP、LNOILP、LNGOLDP三个时间序列均存在单位根,这说明三者在5%与1%置信度水平下均是非平稳的,需进一步进行一阶差分。其次,对三个时间序列进行差分,分别得到DLNGASP、DLNOILP、DLNGOLDP三个一阶差分序列,再对差分后的序列进行检验,发现在5%与1%的临界值水平下均小于ADF值,且P值均小于0.05,所以DLNGOLDP、DLNOILP、DLNGASP三个序列均是一阶单整的,故可以对原序列进行协整分析。

<xref></xref>Table 1. The result of unit root test for the seriesTable 1. The result of unit root test for the series 表1. 序列的单位根检验结果

时间序列

ADF值

5%临界值

1%临界值

P值

是否平稳

LNGASP

−1.787

−2.885

−3.484

0.3868

LNOILP

−2.300

−2.885

−3.484

0.1721

LNGOLDP

−1.945

−2.885

−3.484

0.3110

DLNGASP

−10.410

−2.885

−3.484

0

DLNOILP

−9.596

−2.885

−3.484

0

DLNGOLDP

−15.513

−2.885

−3.484

0

1) VAR模型最优滞后阶数选择

<xref></xref>Table 2. Selection of optimal lag order for VAR modelTable 2. Selection of optimal lag order for VAR model 表2. VAR模型最优滞后阶数选择

Sample:6 thru 180

Number of obs = 175

Lag

LL

LR

df

p

FPE

AIC

HQIC

SBIC

0

568.792

3.1E−07

−6.4662

−6.44419

−6.41194*

1

587.587

37.59

9

0.000

2.8E−07

−6.57814

−6.49011*

−6.36113

2

599.317

23.458*

9

0.005

2.7E−07*

−6.60933*

−6.45528

−6.22956

3

607.137

15.641

9

0.075

2.7E−07

−6.59585

−6.37579

−6.05332

4

612.396

10.518

9

0.310

2.9E−07

−6.5531

−6.26701

−5.84781

注:LogL为对数似然函数;LR为似然统计量;FPE为最终预测误差信息准则;AIC为赤池信息准则;HQIC为汉南奎因信息准则;SBIC为施瓦茨斯信息准则;*为该信息准则下的最优选择。

表2 所示,*为根据LR,FPE以及AIC准则,我们选取的最优滞后阶数为2。

2) Johansen协整检验

对原油、天然气价格指数和黄金价格序列进行协整检验,由于EG两步法仅适用于2个变量之间的关系,故本文的协整检验将采用Johansen极大似然法。

<xref></xref>Table 3. Johansen cointegration testTable 3. Johansen cointegration test 表3. Johansen协整检验

Trend:Constant

Number of obs = 178

Sample:3 thru 180

Number of lags = 2

Maximum rank

Params

LL

Eigenvalue

Trace statistic

Critical value 5%

0

12

597.94327

.

40.9603

29.68

1

17

611.46778

0.14098

13.9113*

15.41

2

20

616.43605

0.05429

3.9747

3.76

3

21

618.42342

0.02208

表3 Johansen测试的结果显示了不同协整关系个数的统计量和对应的5%临界值,在rank为0时,迹统计量远大于5%的临界值,因此拒绝原假设不存在协整关系,当rank为1时,迹统计量13.9113小于5%的临界值15.41,因此不能拒绝存在一个协整关系的原假设,认为存在至少一个协整关系。最后,*号标注了选择的协整关系个数为1。因此确定三者之间存在协整关系。

通过协整检验证明了变量序列间在较长时间内的关系是否处于平稳状态,构建向量误差修正模型能够探究黄金价格、原油及天然气价格指数在长期均衡关系下,各变量的短期偏移对黄金价格的影响。协整方程结果如 表4 所示:

<xref></xref>Table 4. Cointegration testTable 4. Cointegration test 表4. 协整检验

Eqution

Parms

chi2

P > chi2

_ce1

2

88.57513

0.0000

Identification:beta is exactly identified

Johansen normalization restriction imposed

beta

Coefficient

Std. err.

z

P > | z |

[95% cof. interval]

_ce1

lngoldp

1

.

.

.

.

.

lnoilp

314.5682

61.24126

5.14

0.000

194.5376

434.5989

lngasp

−183.3508

38.28047

−4.79

0.000

−258.3791

−108.3224

_cons

−669.3327

.

.

.

.

.

beta表示的是协整方程的系数估计值。具体来说,lngoldp、lnoilp和lngasp分别表示黄金价格、原油和天然气价格指数的系数估计值。_ce1表示的是常数项的系数估计值。

根据 表4 所展示的协整方程结果,黄金价格(lngoldp)、石油价格(lnoilp)和天然气价格(lngasp)之间存在一种长期的均衡关系。黄金价格的自然对数与石油价格的自然对数成正比,与天然气价格的自然对数成反比。更具体地说,当石油价格的自然对数上升1单位时,黄金价格的自然对数将上升约314.5682单位;而当天然气价格的自然对数上升1单位时,黄金价格的自然对数将下降约183.3508单位。此外,常数项(_cons)的估计值为−669.3327。由此得到LNGOLDP、LNOILP和LNGASP和长期均衡关系的协整方程:

LNGOLDP = 314.5682 LNOILP + 183.3508 LNCOALP + 669.3327 (3)

进一步通过AR根检验来确保VECM模型的稳定性。 图6 所示的为AR根单位圆下的模型稳定性检测,可以看出模型特征根的倒数均在单位圆内,说明构建的VECM模型是稳定的。因此,自2009年1月至2023年12月,国际黄金、原油和天然气价格指数存在长期协整关系。

Figure 6. VECM model testing--图6. VECM模型检验--
4.3. 2009年至2020年2月协整分析

经过对2009年1月至2023年12月的国际黄金、原油和天然气价格指数数据的深入研究,我们发现黄金、原油与天然气之间存在长期的协整关系。然而,从2020年3月开始,受到新冠疫情、以及正在进行的俄乌战争对欧盟和全球的能源市场产生了严重影响 [13] ,这三者的价格走势出现了分离。为了更准确地评估这些事件对国际黄金、原油及天然气市场关系的影响,我们对这些事件发生前的2009年1月~2020年2月时间段进行进一步的协整分析。

对2009年1月~2020年2月的黄金价格、原油及天然气价格指数进行平稳性检验,LNGASP1、LNOILP1、LNGOLDP1分别表示2009年1月~2020年2月期间的黄金、原油、天然气的价格。由 表5 可以看出,LNGOLDP1、LNOILP1和LNGASP1的ADF值在5%、1%置信度对应的临界值均大于各自对应的ADF值且其ADF值对应的P值均大于0.05,故这三个时间序列存在单位根,说明LNGOLDP1、LNOILP1、LNGASP1和在5%与1%两个置信度水平下均是非平稳的。对三个序列进行一阶差分后发现差分后的序列DLNGOLDP1、DLNOILP1和DLNGASP1在1%的显著水平下均是平稳的,所以三者均是一阶单整序列,故可以三者原序列进行协整分析。

<xref></xref>Table 5. The result of unit root test for the seriesTable 5. The result of unit root test for the series 表5. 序列的单位根检验结果

时间序列

ADF值

5%临界值

1%临界值

P值

是否平稳

LNGASP1

0.177

−2.888

−3.499

0.9709

LNOILP1

−1.963

−2.888

−3.499

0.3031

LNGOLDP1

−2.529

−2.888

−3.499

0.1087

DLNGASP1

−7.300

−2.888

−3.499

0

DLNOILP1

−8.760

−2.888

−3.499

0

DLNGOLDP1

−13.510

−2.888

−3.499

0

1) VAR模型最优滞后阶数选择

表6 所示,根据LR,FPE以及AIC准则,我们选取的最优滞后阶数为1。

<xref></xref>Table 6. Selection of optimal lag order for VAR model from January 2009 to February 2020Table 6. Selection of optimal lag order for VAR model from January 2009 to February 2020 表6. 2009年1月-2020年2月VAR模型最优滞后阶数选择

Sample:6 thru 134

Number of obs = 129

Lag

LL

LR

df

p

FPE

AIC

HQIC

SBIC

0

532.667

5.4E−08

−8.2119

−8.18487

−8.14539*

1

549.534

33.734*

9

0.000

4.8E−08*

−8.33387*

−8.22578*

−8.06784

2

552.581

6.0926

9

0.731

5.3E−08

−8.24156

−8.0524

−7.77601

3

556.4

7.6383

9

0.571

5.7E−08

−8.16124

−7.89101

−7.49617

4

559.077

5.3537

9

0.802

6.3E−08

−8.06321

−7.7119

−7.19861

*号标注了模型协整关系个数为0。

2) Johansen 协整检验

采用Johansen极大似然法来进行协整检验:

<xref></xref>Table 7. Johansen cointegration testTable 7. Johansen cointegration test 表7. Johansen协整检验

Trend:Constant

Number of obs = 133

Sample:2 thru 134

Number of lags = 1

Maximum rank

Params

LL

Eigenvalue

Trace statistic

Critical value 5%

0

3

542.74285

.

27.6651*

29.68

1

8

552.03606

0.13042

9.0786

15.41

2

11

556.24159

0.06128

0.6676

3.76

3

12

556.57538

0.00501

*号标注了模型协整关系个数为0。

表7 Johansen测试的结果显示了不同协整关系个数的迹统计量和对应的5%显著水平下的临界值。结果显示,rank为0的迹统计量小于5%显著水平下的临界值,因此不能拒绝不存在协整关系的原假设,因此三者之间在2009年1月至2020年3月间不存在协整关系。

5. 讨论

本文分别对2009年1月至2023年12月和2009年1月至2020年3月期间国际黄金价格、原油和天然气的价格指数分别进行分析,探讨了它们之间可能存在的协整关系。

研究发现,在2009年1月至2023年12月的整个研究时段内,黄金、原油与天然气价格之间存在显著的协整关系,黄金价格与原油价格指数之间存在显著的正相关关系,而黄金价格与天然气价格指数之间存在负相关关系。

然而,2009年1月至2020年2月的子时段内,这三种大宗商品价格不存在显著的协整关系,本研究认为这主要受到了新冠疫情和俄乌冲突等“黑天鹅”事件的影响以及可能在早期的数据样本或市场环境下未能发现显著的协整关系,但随着数据的积累和市场环境的变化,这种关系逐渐变得显著。

6. 结论

本研究通过对比2009年1月至2020年2月和2009年1月至2023年12月两个时间段的国际黄金、原油、天然气价格的协整关系,揭示了这些大宗商品价格之间关系的动态变化。在短期内(如2009年1月至2020年2月),由于全球经济环境的不稳定性和能源市场供需格局的变化,这些商品价格之间并未形成稳定的协整关系。然而,在长期内(如2009年1月至2023年12月),它们之间却存在显著的协整关系,这表明尽管以往价格之间不存在长期协整关系,但随着时间的推移,长期内这些商品价格之间会呈现一种稳定的均衡关系。

这一研究发现对于投资者和政策制定者具有重要意义。首先,它提醒我们,在分析大宗商品价格关系时,需要考虑到不同时间尺度下的动态变化。短期内,价格波动可能受到特定事件或市场变化的影响,而长期内则可能呈现出更为稳定的均衡关系。其次,这一研究也强调了宏观经济状况、供需关系以及货币政策等因素对大宗商品价格关系的综合影响。因此,在制定投资策略或经济政策时,需要全面考虑这些因素的综合作用。

总的来说,本研究不仅揭示了国际黄金、原油和天然气价格之间协整关系的动态变化,还为我们提供了更深入的理解这些大宗商品价格关系的视角。未来的研究可以进一步探讨这些商品价格关系的具体影响因素,以期为投资者和政策制定者提供更准确的决策依据。

References 柴建, 林婕, 梁婷. 北美市场原油和天然气联动性研究——基于贝叶斯DCC-GARCH和LSTAR模型的实证分析[J]. 管理评论, 2021, 33(7): 16-28. >https://doi.org/10.14120/j.cnki.cn11-5057/f.2021.07.002 周子朝. 国际原油与黄金价格对我国通货膨胀的影响[J]. 北方经贸, 2022(10): 41-44. 张颖, 李佳彧. 全球大宗商品价格异常波动对中国金融市场系统性风险的影响与防范机制研究[J]. 价格月刊, 2023(9): 1-8. >https://doi.org/10.14076/j.issn.1006-2025.2023.09.01 俞仕龙, 尹玉晗, 刘立峰. 全球大宗商品价格异常波动对中国金融市场的影响及系统性风险防范机制研究[J]. 价格月刊, 2024(4): 13-18. >https://doi.org/10.14076/j.issn.1006-2025.2024.04.02 Bachmeier, L.J. and Griffin, J.M. (2006) Testing for Market Integration: Crude Oil, Coal, and Natural Gas. The Energy Journal, 27, 55-71. >https://doi.org/10.5547/ISSN0195-6574-EJ-Vol27-No2-4 Ramberg, D.J. and Parsons, J.E. (2010) The Weak Tie between Natural Gas and Oil Prices. The Energy Journal, 33, 13-36. >https://doi.org/10.5547/01956574.33.2.2 Erdős, P. (2012) Have Oil and Gas Prices Got Separated? Energy Policy, 49, 707-718. >https://doi.org/10.1016/j.enpol.2012.07.022 孙仁金, 谢亮. 原油、天然气与煤炭价格关系研究[J]. 价格月刊, 2020(7): 16-24. >https://doi.org/10.14076/j.issn.1006-2025.2020.07.03 Sujit, K.S. and Ray, S. (2023) Linear and Nonlinear Asymmetric Relationship in Crude Oil, Gold, Stock Market and Exchange Rates: An Evidence from the UAE. Resources Policy, 83, Article 103633.>https://doi.org/10.1016/j.resourpol.2023.103633 Kumar, S., Choudhary, S., Singh, G. and Singhal, S. (2021) Crude Oil, Gold, Natural Gas, Exchange Rate and Indian stock Market: Evidence from the Asymmetric Nonlinear ARDL Model. Resources Policy, 73, Article 102194.>https://doi.org/10.1016/j.resourpol.2021.102194 Kumar, S., Singh, G. and Kumar, A. (2021) Volatility Spillover among Prices of Crude Oil, Natural Gas, Exchange Rate, Gold, and Stock Market: Fresh Evidence from Exponential Generalized Autoregressive Conditional Heteroscedastic Model Analysis. Journal of Public Affairs, 22, e2594. >https://doi.org/10.1002/pa.2594 王宁, 李因果. 中国OFDI对“一带一路”国家GTFP的门槛效应研究[J]. 资源与产业, 2022, 24(5): 29-39. >https://doi.org/10.13776/j.cnki.resourcesindustries.20221017.001 Enescu, A.-G. and Szeles, M.R. (2023) Discussing Energy Volatility and Policy in the Aftermath of the Russia-Ukraine Conflict. Frontiers in Environmental Science, 11, Article 1225753. >https://doi.org/10.3389/fenvs.2023.1225753
Baidu
map