(注:字母不同表现为显著性差异)--Figure 1. The heart rate changes of Scapharca subcrenata under different concentrations of Cd2+ stress, Hg2+ stress, Cd2+ and Hg2+ combined stress.--
A、B:分别为5 mg/L Cd2+和20 mg/L Cd2+胁迫下毛蚶心率变化模式图;C、D:分别为5 mg/L Hg2+和20 mg/L Hg2+胁迫下毛蚶心率变化模式图;E、F:分别为5 mg/L Cd2+ Hg2+联合和20 mg/L Cd2+ Hg2+胁迫下毛蚶心率变化模式图。注:红线为重金属添加时--Figure 2. Heart rate pattern of Scapharca subcrenata under heavy metal stress--图2. 重金属胁迫状态下毛蚶心率模式图--图2. 重金属胁迫状态下毛蚶心率模式图
A、B:分别为5 mg/L Cd2+和20 mg/L Cd2+胁迫下毛蚶心率变化模式图;C、D:分别为5 mg/L Hg2+和20 mg/L Hg2+胁迫下毛蚶心率变化模式图;E、F:分别为5 mg/L Cd2+ Hg2+联合和20 mg/L Cd2+ Hg2+胁迫下毛蚶心率变化模式图。注:红线为重金属添加时--Figure 2. Heart rate pattern of Scapharca subcrenata under heavy metal stress--图2. 重金属胁迫状态下毛蚶心率模式图--图2. 重金属胁迫状态下毛蚶心率模式图
References
陈辰. 毛蚶群体遗传学研究[D]: [博士学位论文]. 青岛: 中国海洋大学, 2016.
王庆志, 张明, 滕炜鸣, 等. 毛蚶养殖生物学研究进展[J]. 大连海洋大学学报, 2015, 30(4): 437-443.
Sun, C., Wei, Q., Ma, L., Li, L., Wu, G. and Pan, L. (2017) Trace Metal Pollution and Carbon and Nitrogen Isotope Tracing through the Yongdingxin River Estuary in Bohai Bay, Northern China. Marine Pollution Bulletin, 115, 451-458. >https://doi.org/10.1016/j.marpolbul.2016.10.066
Wu, G., Shang, J., Pan, L. and Wang, Z. (2014) Heavy Metals in Surface Sediments from Nine Estuaries along the Coast of Bohai Bay, Northern China. Marine Pollution Bulletin, 82, 194-200. >https://doi.org/10.1016/j.marpolbul.2014.02.033
慕建东. 渤海重要渔业水域生态环境质量状况评价[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2009.
张明强. 渤海湾海河大沽口表层沉积物及其近海海洋生物体内重金属的研究[D]: [硕士学位论文]. 天津: 天津师范大学, 2012.
龚倩. 海水滩涂贝类中重金属镉的检测及富集规律的研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2012.
Boening, D.W. (1999) An Evaluation of Bivalves as Biomonitors of Heavy Metals Pollution in Marine Waters. Environmental Monitoring and Assessment, 55, 459-470. >https://doi.org/10.1023/a:1005995217901
马建新, 张宜奎, 宋秀凯, 等. 重金属胁迫对海洋贝类毒性研究进展[J]. 海洋湖沼通报, 2011(2): 35-42.
江璐. 我国海洋船舶污染现状及防治措施[J]. 化工管理, 2013(2): 46-47.
Nicholson, S. and Lam, P.K.S. (2005) Pollution Monitoring in Southeast Asia Using Biomarkers in the Mytilid Mussel Perna viridis (Mytilidae: Bivalvia). Environment International, 31, 121-132. >https://doi.org/10.1016/j.envint.2004.05.007
Xing, Q., Zhang, L., Li, Y., Zhu, X., Li, Y., Guo, H., et al. (2019) Development of Novel Cardiac Indices and Assessment of Factors Affecting Cardiac Activity in a Bivalve Mollusc Chlamys farreri. Frontiers in Physiology, 10, Article No. 293. >https://doi.org/10.3389/fphys.2019.00293
Beyer, J., Green, N.W., Brooks, S., Allan, I.J., Ruus, A., Gomes, T., et al. (2017) Blue Mussels (Mytilus edulis spp.) as Sentinel Organisms in Coastal Pollution Monitoring: A Review. Marine Environmental Research, 130, 338-365. >https://doi.org/10.1016/j.marenvres.2017.07.024
Zhao, X., Wang, S., Li, X., Liu, H. and Xu, S. (2021) Cadmium Exposure Induces TNF-α-Mediated Necroptosis via FPR2/TGF-β/NF-κB Pathway in Swine Myocardium. Toxicology, 453, Article ID: 152733. >https://doi.org/10.1016/j.tox.2021.152733
Limaye, D.A. and Shaikh, Z.A. (1999) Cytotoxicity of Cadmium and Characteristics of Its Transport in Cardiomyocytes. Toxicology and Applied Pharmacology, 154, 59-66. >https://doi.org/10.1006/taap.1998.8575
Lei, W., Wang, L., Liu, D., Xu, T. and Luo, J. (2011) Histopathological and Biochemical Alternations of the Heart Induced by Acute Cadmium Exposure in the Freshwater Crab Sinopotamon yangtsekiense. Chemosphere, 84, 689-694. >https://doi.org/10.1016/j.chemosphere.2011.03.023
Ferramola, M.L., Antón, R.I., Anzulovich, A.C. and Giménez, M.S. (2011) Myocardial Oxidative Stress Following Sub-Chronic and Chronic Oral Cadmium Exposure in Rats. Environmental Toxicology and Pharmacology, 32, 17-26. >https://doi.org/10.1016/j.etap.2011.03.002
Li, X., Zheng, Y., Zhang, G., Wang, R., Jiang, J. and Zhao, H. (2021) Cadmium Induced Cardiac Toxicology in Developing Japanese Quail (Coturnix japonica): Histopathological Damages, Oxidative Stress and Myocardial Muscle Fiber Formation Disorder. Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology, 250, Article ID: 109168. >https://doi.org/10.1016/j.cbpc.2021.109168
王晓宇, 王清, 杨红生. 镉和汞两种重金属离子对四角蛤蜊的急性毒性[J]. 海洋科学, 2009(12): 24-29.
魏爱泓, 矫新明, 毛成责, 等. 重金属汞对海洋底栖动物毛蚶和紫贻贝毒性效应研究[J]. 生态毒理学报, 2018, 13(6): 352-359.
赵艳芳, 吴继法, 翟毓秀, 等. 镉胁迫对不同镉富集能力海水养殖贝类抗氧化能力的影响——以扇贝和菲律宾蛤仔为例[J]. 生态毒理学报, 2014, 9(2): 224-232.
Handy, R.D. and Depledge, M.H. (1999) Physiological Responses: Their Measurement and Use as Environmental Biomarkers in Ecotoxicology. Ecotoxicology, 8, 329-349. >https://doi.org/10.1023/a:1008930404461
De Pirro, M., Santini, G. and Chelazzi, G. (1999) Cardiac Responses to Salinity Variations in Two Differently Zoned Mediterranean Limpets. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 169, 501-506. >https://doi.org/10.1007/s003600050248
Santini, G., Williams, G.A. and Chelazzi, G. (2000) Assessment of Factors Affecting Heart Rate of the Limpet Patella vulgata on the Natural Shore. Marine Biology, 137, 291-296. >https://doi.org/10.1007/s002270000339
Dong, Y. and Williams, G.A. (2011) Variations in Cardiac Performance and Heat Shock Protein Expression to Thermal Stress in Two Differently Zoned Limpets on a Tropical Rocky Shore. Marine Biology, 158, 1223-1231. >https://doi.org/10.1007/s00227-011-1642-6
Widdows, J. (1973) Effect of Temperature and Food on the Heart Beat, Ventilation Rate and Oxygen Uptake of Mytilus edulis. Marine Biology, 20, 269-276. >https://doi.org/10.1007/bf00354270
Bakhmet, I.N., Komendantov, A.J. and Smurov, A.O. (2011) Effect of Salinity Change on Cardiac Activity in Hiatella arctica and Modiolus modiolus, in the White Sea. Polar Biology, 35, 143-148. >https://doi.org/10.1007/s00300-011-1033-y
张雯雯. 菲律宾蛤仔对急性海水酸化和重金属(Cu和Cd)胁迫的生理响应[J]. 渔业科学进展, 2021, 42(5): 97-104.
Chen, N., Luo, X., Gu, Y., Han, G., Dong, Y., You, W., et al. (2016) Assessment of the Thermal Tolerance of Abalone Based on Cardiac Performance in Haliotis discus hannai, H. gigantea and Their Interspecific Hybrid. Aquaculture, 465, 258-264. >https://doi.org/10.1016/j.aquaculture.2016.09.004
Curtis, T.M., Williamson, R. and Depledge, M.H. (2000) Simultaneous, Long-Term Monitoring of Valve and Cardiac Activity in the Blue Mussel Mytilus edulis Exposed to Copper. Marine Biology, 136, 837-846. >https://doi.org/10.1007/s002270000297
Duan, J., Yu, Y., Li, Y., Li, Y., Liu, H., Jing, L., et al. (2015) Low-Dose Exposure of Silica Nanoparticles Induces Cardiac Dysfunction via Neutrophil-Mediated Inflammation and Cardiac Contraction in Zebrafish Embryos. Nanotoxicology, 10, 575-585. >https://doi.org/10.3109/17435390.2015.1102981
Depledge, M.H. and Andersen, B.B. (1990) A Computer-Aided Physiological Monitoring System for Continuous, Long-Term Recording of Cardiac Activity in Selected Invertebrates. Comparative Biochemistry and Physiology Part A: Physiology, 96, 473-477. >https://doi.org/10.1016/0300-9629(90)90664-e
Monteiro, D.A., Taylor, E.W., Rantin, F.T. and Kalinin, A.L. (2017) Impact of Waterborne and Trophic Mercury Exposures on Cardiac Function of Two Ecologically Distinct Neotropical Freshwater Fish Brycon amazonicus and Hoplias malabaricus. Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology, 201, 26-34. >https://doi.org/10.1016/j.cbpc.2017.09.004
Bakhmet, I.N., Kantserova, N.P., Lysenko, L.A. and Nemova, N.N. (2012) Effect of Copper and Cadmium Ions on Heart Function and Calpain Activity in Blue Mussel Mytilus edulis. Journal of Environmental Science and Health, Part A, 47, 1528-1535. >https://doi.org/10.1080/10934529.2012.680393
Suter, G. (2007) Freshwater Bivalve Ecotoxicology. Integrated Environmental Assessment and Management, 3, 568-569. >https://doi.org/10.1002/ieam.5630030418
Li, Y., Yang, H., Liu, N., Luo, J., Wang, Q. and Wang, L. (2015) Cadmium Accumulation and Metallothionein Biosynthesis in Cadmium-Treated Freshwater Mussel Anodonta woodiana. PLOS ONE, 10, e0117037. >https://doi.org/10.1371/journal.pone.0117037
Moreira, C. (2003) Effects of Mercury on Myosin Atpase in the Ventricular Myocardium of the Rat. Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology, 135, 269-275. >https://doi.org/10.1016/s1532-0456(03)00110-8
Vornanen, M., Shiels, H.A. and Farrell, A.P. (2002) Plasticity of Excitation-Contraction Coupling in Fish Cardiac Myocytes. Comparative Biochemistry and Physiology Part A: Molecular&Integrative Physiology, 132, 827-846. >https://doi.org/10.1016/s1095-6433(02)00051-x
Nusier, M., Shah, A. and Dhalla, N. (2021) Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca
2+-Transport. Physiological Research, 70, S443-S470. >https://doi.org/10.33549/physiolres.934805
Arbi, S., Bester, M.J., Pretorius, L. and Oberholzer, H.M. (2021) Adverse Cardiovascular Effects of Exposure to Cadmium and Mercury Alone and in Combination on the Cardiac Tissue and Aorta of Sprague-Dawley Rats. Journal of Environmental Science and Health, Part A, 56, 609-624. >https://doi.org/10.1080/10934529.2021.1899534
王来, 姚素梅, 王强. 镉的心脏毒性[J]. 环境与职业医学, 2006(5): 436-439.