aam Advances in Applied Mathematics 2324-7991 2324-8009 beplay体育官网网页版等您来挑战! 10.12677/aam.2024.136282 aam-90256 Articles 数学与物理 非线性广义半马尔可夫跳跃系统的H 控制
H Control of Nonlinear Singular Semi-Markov Jump Systems
郑成德 大连交通大学理学院,辽宁 大连 06 06 2024 13 06 2952 2965 28 5 :2024 22 5 :2024 22 6 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 探讨一类非线性广义半Markov跳跃系统的随机稳定性和H 控制问题。设计新型的Lyapunov-Krasovkii泛函(LKF),用于减少冗余决策变量。同时,引入参数依赖的互凸矩阵不等式(PDRCMI)来降低保守性,保证了非线性广义Markov跳跃系统渐进稳定并满足性能,最后,通过数值算例验证了所得方法的有效性。
The stochastic stability of a class of nonlinear singular semi-Markov jumping systems and H control problems are discussed. A new type of Lyapunov-Krasovkii functional (LKF) is designed to reduce redundant decision variables. At the same time, the parameter-dependent Convex Matrix Inequality (PDRCMI) is introduced to reduce the conservatism, which ensures the asymptotic stability and satisfies the performance of the nonlinear singular Markov jumping system, and finally, the effectiveness of the proposed method is verified by numerical examples.
广义半马尔可夫跳跃系统,非线性,参数相关互凸矩阵不等式,H 控制
Singular Semi-Markov Jump System
Nonlinearity Parameter-Dependent Reciprocally Convex Matrix Inequality H Control
1. 引言

广义系统因其广泛应用于电力的系统、航空航天工程、社会经济系统、化学过程、生物系统、网络分析、飞机控制系统、电力网络、太阳能热中央接收器、机器人机械手系统等 [1] - [3] 领域而引起了广泛的兴趣。几十年来,稳定性问题得到了广泛的研究 [1] - [3] 。然而,在这些实际系统的参数和结构中,一些现象,如子系统互连的修改、突变环境干扰、组件故障或维修等原因,可能导致系统结构,参数发生随机变化。而幸运的是,这些变化可以用马尔可夫跳跃系统(MJSs)适当地描述,并且每种操作模式都与一个动态系统关联,其中模型转换在一个马尔可夫过程的控制下。因此,学术界和工业界的大量关注都集中在广义马尔可夫跳跃系统(SMJSs)的研究上。

MJSs作为一种特殊的随机系统,由于其理论意义已经在网络系统控制、能源、制造和经济系统 [1] - [6] 中得到了广泛的研究。许多问题已经解决,取得良好的结果,例如,H控制滤波的不确定时滞MJSs [2] ,具有部分未知转移速率的MJSs的稳定性分析 [3] ,不定二次最优控制问题 [4] ,基于分散二维马尔可夫跳跃系统的故障检测 [7]

2. 新判据 2.1. 模型介绍与假设

本文采用以下记号本文考虑下述不确定广义半马尔可夫跳跃系统:

{ E x ˙ ( t ) = ( A ( r t ) + Δ A ( r t ) ) x ( t ) + ( A d ( r t ) + Δ A d ( r t ) ) x ( t d ( t ) ) + B w ( r t ) ϖ ( t ) + B ( r t ) ( u ( t ) + f ( t , x ( t ) , r ( t ) ) ) + B d ( r t ) ( u ( t d ( t ) ) + f ( t , x ( t d ( t ) ) , r ( t ) ) ) z ( t ) = C ( r t ) x ( t ) + C d ( r t ) x ( t d ( t ) ) + D ( r t ) w ( t ) (2.1)

其中 x ( t ) n 为系统状态向量, u ( t ) m 为控制输入, z ( t ) p 为控制输出, w ( t ) q 为外部扰动,矩阵 E n × n 可能是奇异矩阵, R a n k ( E ) = r n f ( t , x ( t ) ) 为非线性函数。 A ( r t ) A d ( r t ) B ( r t ) B d ( r t ) B w ( r t ) C ( r t ) C d ( r t ) D ( r t ) 是适当维度的已知常数矩阵。 Δ A ( r t ) Δ A d ( r t ) 是未知时变矩阵。时间延迟 d ( t ) 满足 0 d 1 d ( t ) d 2 h 1 d ˙ ( t ) h 2 t 0 d 1 , d 2 , h 1 , h 2 是给定常数边界,同时定义 0 < d 12 = d 2 d 1 。模态 { r t , t 0 } 是连续时间半马尔可夫过程,该过程在有限集中取值 S = { 1 , 2 , , s } [1] ,转移速率矩阵 Π = { π i j } 如下定义:

P { r ( t + Δ ) = j | r ( t ) = i } = { π i j Δ + o ( Δ ) , i j , 1 + π i i Δ + o ( Δ ) , i = j ,

这里 Δ > 0 lim Δ 0 o ( Δ ) Δ = 0 π i j ( h ) 0 ( i , j S , i j ) ,指将i从t的模态转变到 t + Δ 的j模态, i S 都有 π i j = j = 1 , j i s π i j 。为了便于表达定义:

A ( r t ) = A i , A d ( r t ) = A d i , B ( r t ) = B i , B d ( r t ) = B d i , B w ( r t ) = B w i , C ( r t ) = C i , C d ( r t ) = C d i , D ( r t ) = D i

Δ A ( r t ) = Δ A i , Δ A d ( r t ) = Δ A d i , f ( t , x ( t ) , r ( t ) ) = f ( t ) , f ( t , x ( t d ( t ) ) , r ( t ) ) = f ( t d ( t ) ) .

为了简化系统的形式,我们可以将系统(2.1)重写如下:

{ E x ˙ ( t ) = ( A i + Δ A i ) x ( t ) + ( A d i + Δ A d i ) x ( t d ( t ) ) + B i ( u ( t ) + f ( t ) ) + B d i ( u ( t d ( t ) ) + f ( t d ( t ) ) ) + B w i ϖ ( t ) Z ( t ) = C i x ( t ) + C d i x ( t d ( t ) ) + D i w ( t ) (2.2)

假设转移速率矩阵 Π ( π i j ) 通常不确定,我们为系统(2.1)计算转移速率矩阵,如下所示:

[ π ^ 11 + Δ π 11 ? π ^ 13 + Δ π 13 ? ? ? π ^ 23 + Δ π 23 π ^ 2 s + Δ π 2 s ? π ^ s 2 + Δ π s 2 ? π ^ s s + Δ π s s ] (2.3)

其中 π ^ i j Δ π i j [ δ i j , δ i j ] ( δ i j 0 ) i j [ δ i j , δ i j ] ( δ i j 0 ) 分别代表估计值和不确定转移速率 π i j 的估计误差。 π ^ i j δ i j 为已知,“?”是完全未知的。对任意 i S ,集合 U i 表示 U i = U k i U u k i 。其中 U k i { j : π i j , j S } U u k i { j : π i j , j S } 。此外,若 U k i ,它可以被描述为 U k i = { k 1 i , k 2 i , , k m i i } ,其中 k m i i S + 表示矩阵 Π 的第i排的第m个已知边界。

备注2.1无论是有界不确定的TR(BUTR)或部分未知TR(PUTR)模型均不如上述不确定转移速率的描述那么宽泛。重写了以下两个不确定的模型:

[ π ^ 11 + Δ 11 π ^ 12 + Δ 12 π ^ 1 s + Δ 1 s π ^ 21 + Δ 21 π ^ 22 + Δ 22 π ^ 2 s + Δ 2 s π ^ s 1 + Δ s 1 π ^ s 2 + Δ s 2 π ^ s s + Δ s s ] (2.4)

其中 π ^ i j δ i j 0 ( j S , j i ) π ^ i i = j = 1 , j i s π ^ i j δ i i = j = 1 , j i s δ i j

[ π 11 ? π 13 ? ? ? π 23 π 2 s ? π s 2 ? π s s ] (2.5)

显然,当 U k i i S 时,GUTR模型(2.3)简化为BUTR模型(2.5),若 δ i j = 0 i S j U k i 则简化为PUTR模型(2.5)。显然,BUTR或PUTR模型不如GUTR模型(2.3)通用,这意味着它更实用。

假设已知TR的估计值如下定义:

假设2.1若 U k i = S ,则 π ^ i j δ i j 0 ( j S , j i ) π ^ i i = j = 1 , j i s π ^ i j 0 δ i i = j = 1 , j i s δ i j > 0

假设2.2若 U k i S i U k i ,则 π ^ i j δ i j 0 ( j U k i , j i ) π ^ i i + δ i i 0 j U k i π ^ i j 0

假设2.3若 U k i S i U k i ,则 π ^ i j δ i j 0 ( j U k i )

这三个假设是基于TR特征而得出的,由此可以推断它们具有合理性。

( e . g . π i j 0 ( j S , j i ) and π i i = j = 1 , j i s π i j ) .

假设2.4在本文中所涉及的不确定性属于有界范数的,假设如下:

[ Δ A i Δ A d i ] = M i F i ( t ) [ N i N d i ] , i S

已知的常数矩阵 M i N i N d i 具有适当的维度,使 F i ( t ) 得满足 F i T ( t ) F i ( t ) I i S

假设2.5非线性函数 f ( t , ξ ( t ) ) 满足

{ f T ( t ) f ( t ) x T ( t ) T 2 x ( t ) f T ( t d ( t ) ) f ( t d ( t ) ) x T ( t d ( t ) ) T 2 x ( t d ( t ) ) 其中 T = d i a g { σ 1 , σ 2 , , σ s }

定义2.1 [7] det ( s E ^ A ^ i ) 对任意 r t = i S 均不为0,则系统(2.2)正则。

1) 若对任意 r t = i S deg ( det ( s E ^ A ^ i ) ) = r a n k ( E ^ ) ,则系统(2.2)被称为无脉冲。

2) 当 w ( t ) = 0 u ( t ) = 0 时且存在标量 M ( r 0 , φ ( t ) ) > 0 使得

lim t ε { 0 x ( t ) 2 d t | r 0 , x ( t ) = φ ( t ) , t [ h , 0 ] } M ( r 0 , φ ( t ) ) ,则(2.2)随机稳定的。

3) 当 w ( t ) = 0 u ( t ) = 0 时,若系统(2.2)是正则的、无脉冲的,随机稳定的,则称它是随机容许的。

定义2.2对于给定的标量 γ > 0 ,系统(2.2)是随机容许的并满足H性能 γ ,如果它在 w ( t ) = 0 及零初始条件下是随机容许的,非零的 w ( t ) L 2 [ 0 , ) ,满足以下条件:

ε { 0 ( z T ( t ) z ( t ) λ 2 w T ( t ) w ( t ) ) d t } < 0 .

引理2.1设H和G是具有适当维数的实数矩阵,并且 F i T ( t ) F i ( t ) I 。以下不等式适用于任何标量 λ > 0

1) H F i ( t ) G T + G F i T ( t ) H T λ G G T + λ 1 H H T ,2) ± 2 H T G H T H + G T G

引理2.2设 C R n × n B R m × m 为正定矩阵,当且仅当 A > B T C 1 B ,则对 A R m × m

F = ( A B T B C ) > 0

2.2. 主要结果

对于给定的标量 0 d 1 d 2 h 1 h 2 ε 1 0 ε 2 0 γ > 0 ,如果存在矩阵 P i > 0 R 1 i > 0 R 2 i > 0 R 3 i > 0 Q 1 > 0 Q 2 > 0 S 1 > 0 S 2 > 0 Z 1 > 0 Z 2 > 0 Y 1 Y 2 使得以下不等式对任意 i I 成立,则系统渐进稳定的并具有相应的H衰减指数 γ

E T P i = P i T E > 0 ,

Ω [ m ] = [ E [ m ] E 12 E 22 ] < 0 , m = 1 , 2 , 3 , 4 ,

j = 1 N π i j R 1 j Q 1 0 , j = 1 N π i j R 3 j Q 2 0 ,

j = 1 N π i j R 1 j Q 1 0 , j = 1 N π i j R 3 j Q 2 0 , R 2 i R 3 i 0 , Φ 1 > 0 , Φ 2 > 0 ,

E ( d ( t ) , d ˙ ( t ) ) = E 1 i μ | d ( t ) , d ˙ ( t ) + E 2 + E 3 ,

E 1 i μ | d ( t ) , d ˙ ( t ) = Ξ + Λ 1 T ( j = 1 N π i j P j ) Λ 1 + x T ( t ) E T j = 1 N π i j P j x ( t ) ,

E 1 i μ | d ( t ) , d ˙ ( t ) = s y m ( Λ 1 T P i Λ 2 ) + Λ 1 T ( j = 1 N π i j P j ) Λ 1 + e 1 T ( R 1 i + R 3 i + d 1 Q 1 + d 2 Q 2 + Θ 1 ) e 1 + e 2 T ( λ i 6 1 T 2 R 1 i ) e 2 e 3 T R 2 i e 3 + e 5 T ( d 2 2 S 1 + d 12 2 S 2 + 1 2 d 1 2 ( Z 1 + Z 2 ) ) e 5 Λ 6 T Z ¯ 1 Λ 6 Λ 7 T Z ¯ 2 Λ 7 + x T ( t ) E T j = 1 N π i j P j x ( t ) + m t e 4 T ( R 2 i R 3 i ) e 4 + e 1 T P i Θ 2 e 2 ,

Ξ = s y m ( Λ 1 T P i Λ 2 ) + e 1 T ( R 1 i + R 3 i + d 1 Q 1 + d 2 Q 2 + Θ 1 ) e 1 + e 2 T ( λ i 6 1 T 2 R 1 i ) e 2 e 3 T R 2 i e 3 + m t e 4 T ( R 2 i R 3 i ) e 4 + e 1 T P i Θ 2 e 2 + e 5 T ( d 2 2 S 1 + d 12 2 S 2 + 1 2 d 1 2 ( Z 1 + Z 2 ) ) e 5 Λ 6 T Z ¯ 1 Λ 6 Λ 7 T Z ¯ 2 Λ 7 ,

E 2 = Γ 1 T Φ 1 Γ 1 Γ 2 T Φ 2 Γ 2 , E 3 = e z i μ T e z i μ e 14 T γ 2 I e 14 , E 12 = [ 1 α 1 Λ 3 T Y 1 α 1 Λ 4 T Y 1 T 1 α 2 Λ 5 T Y 2 α 2 Λ 4 T Y 2 T ] ,

Φ 1 = [ ( 2 α 1 ) S ¯ 1 + ( 1 α 1 ) ε 1 I Y 1 ( 1 + α 1 ) S ¯ 1 + α 1 ε 1 I ] , Φ 2 = [ ( 2 α 2 ) S ¯ 2 + ( 1 α 2 ) ε 2 I Y 2 ( 1 + α 2 ) S ¯ 2 + α 2 ε 2 I ] ,

Θ 1 = j = 1 N π i j P j + P i ( 2 A i + 2 B i K + λ i 1 1 N i T N i + λ i 3 1 N k i T N k i + λ i 1 M i M i T P i T + λ i 3 B i M i M i T P i T B i T + λ i 6 B d i B d i T P i T ) + λ i 5 1 T 2

Θ 2 = 2 A d i + 2 B d i K d i + λ i 2 1 N d i T N d i + λ i 4 1 N k d i T N k d i + λ i 2 M i M i T P i T + λ i 4 B i M i M i T P i T B i T , E 22 = d i a g { S ¯ 1 , S ¯ 1 , S ¯ 2 , S ¯ 2 } ,

Λ 1 = [ ( d ( t ) d 1 ) e 6 T ( d 2 d ( t ) ) e 7 T d ( t ) e 8 T ( d ( t ) d 1 ) 2 e 10 T ( d 2 d ( t ) ) 2 e 11 T d ( t ) 2 e 12 T ] T , Γ 1 = [ Λ 3 T Λ 4 T ] T , Γ 2 = [ Λ 5 T Λ 4 T ] T ,

Λ 2 = [ E T e 2 T m t E T e 4 T m t E T e 4 T E T e 3 T e 1 T m t E T e 4 T ( d ( t ) d 1 ) E T e 1 T ( d ( t ) d 1 ) e 6 T ( d 2 d ( t ) ) E T e 1 T ( d 2 d ( t ) ) e 7 T d ( t ) E T e 1 T d ( t ) e 8 T ] T ,

Λ 3 = [ r 1 T r 2 T r 3 T ] T , Λ 4 = [ r 4 T r 5 T r 6 T ] T , Λ 5 = [ r 7 T r 8 T r 9 T ] T , Λ 6 = [ r 10 , r 11 ] T , Λ 7 = [ r 12 , r 13 ] T ,

r 1 = e 1 e 4 , r 2 = e 1 + e 4 2 e 8 , r 3 = e 1 e 4 6 e 8 + 12 e 12 , r 4 = e 4 e 3 , r 5 = e 3 + e 4 2 e 7 , r 6 = e 3 e 4 6 e 7 + 12 e 11 , r 7 = e 2 e 4 , r 8 = e 2 + e 4 2 e 6 , r 9 = e 2 e 4 6 e 6 + 12 e 10 , r 10 = e 1 e 9 , r 11 = e 1 + 2 e 9 6 e 13 , r 12 = e 2 e 9 , r 13 = e 2 4 e 9 + 6 e 13 ,

μ 1 = ( 1 α 1 ) Λ 3 T Y 1 S ¯ 1 1 Y 1 Λ 3 + α 1 Λ 4 T Y 1 S ¯ 1 1 Y 1 Λ 4 , μ 2 = ( 1 α 2 ) Λ 5 T Y 2 S ¯ 2 1 Y 2 Λ 5 + α 2 Λ 6 T Y 2 S ¯ 2 1 Y 2 Λ 6 ,

α 1 = d ( t ) d 2 , α 2 = d ( t ) d 1 d 12 , m t = 1 d ˙ ( t ) , S ¯ 1 = d i a g { S 1 , 3 S 1 , 5 S 1 } , S ¯ 2 i = d i a g { S 2 , 3 S 2 , 5 S 2 } ,

Z ¯ 1 = d i a g { 2 Z 1 , 4 Z 1 } , Z ¯ 2 = d i a g { 2 Z 2 , 4 Z 2 } , e i = [ 0 ( 2 n + k ) × ( i 1 ) ( 2 n + k ) I ( 2 n + k ) 0 ( 2 n + k ) × ( 13 i ) ( 2 n + k ) 0 ( 2 n + k ) × ( m + q + l ) ] , i = 1 , , 14.

证明:首先证明系统是正则的、无脉冲的,存在M,N满足

M E N = [ I r 0 0 0 ] , M A i N = [ A 11 A 12 A 21 A 22 ] , M T P i N = [ P 11 P 12 P 21 P 22 ] ,

E T P i = P i T E ,可知 P 12 = 0 。将左右乘以N和 N T Ω i 11 < 0 ,则 A 22 T P 22 + P 22 T A 22 < 0 ,故 A 22 是非奇异的。因此 det ( A 22 ) 0 det ( det ( s E A i ) ) = r = r a n k ( E ) ,则 ( E , A i ) 是正则的、无脉冲的。同样地,进行左右分别乘以 [ I I ] 7 × 1 T [ I I ] 7 × 1 ( A i + A d i ) T P i + P i T ( A i + A d i ) + j = 1 s π i j E T P j E < 0 可知 ( E , A i + A d i ) 是正则,无脉冲的。根据 [2] 中定义1系统是正则,无脉冲的。接下来,证明系统是渐进稳定,构造LKF函数如下。

V ( x t ) = k = 1 5 V k ,

V 1 ( x t ) = x T ( t ) E T P i x ( t ) + η T ( t ) P i η ( t ) ,

V 2 ( x t ) = t d 1 t x T ( s ) R 1 i x ( s ) d s + d 1 0 t d 1 t x T ( s ) Q 1 x ( s ) d s d θ ,

V 3 ( x t ) = t d 2 t d ( t ) x T ( s ) R 2 i x ( s ) d s + t d ( t ) t x T ( s ) R 3 i x ( s ) d s + d 2 0 t + θ t x T ( s ) Q 2 x ( s ) d s d θ ,

V 4 ( x t ) = d 2 d 2 0 t + θ t x ˙ T ( s ) E T S 1 E x ˙ ( s ) d s d θ + d 12 d 2 d 1 t + θ t x ˙ T ( s ) E T S 2 E x ˙ ( s ) d s d θ ,

V 5 ( x t ) = t d 1 t u t θ t x ˙ T ( s ) E T Z 1 E x ˙ ( s ) d s d θ d u + t d 1 t t d 1 u θ t x ˙ T ( s ) E T Z 2 E x ˙ ( s ) d s d θ d u ,

η ( t ) = [ t d ( t ) t d 1 x T ( t ) E T d s t d 2 t d ( t ) x T ( t ) E T d s t d ( t ) t x T ( t ) E T d s t d ( t ) t d 1 θ t x T ( t ) E T d s d θ t d 2 t d ( t ) θ t x T ( t ) E T d s d θ t d ( t ) t θ t x T ( t ) E T d s d θ ] T .

L为弱无穷小算子,有:

L V 1 ( x t ) = 2 Ψ T ( t ) Λ 1 T P i Λ 2 Ψ ( t ) + 2 x T ( t ) E P i x ˙ ( t ) + Ψ T ( t ) Λ 1 T j = 1 N π i j P j Λ 1 Ψ ( t ) + x T ( t ) E T j = 1 N π i j P j x ( t ) = Ψ T ( t ) [ s y m ( Λ 1 T P i Λ 2 ) + Λ 1 T ( j = 1 N π i j P j ) Λ 1 ] Ψ ( t ) + x T ( t ) j = 1 N π i j P j x ( t ) + s y m [ x T ( t ) E T P i x ˙ ( t ) ] = Ψ T ( t ) [ s y m ( Λ 1 T P i Λ 2 ) + Λ 1 T ( j = 1 N π i j P j ) Λ 1 ] Ψ ( t ) + x T ( t ) j = 1 N π i j P j x ( t ) + 2 x T ( t ) P i A i x ( t ) + 2 x T ( t ) P i Δ A i x ( t ) + 2 x T ( t ) P i B i Δ K i x ( t ) + 2 x T ( t ) P i A d i x ( t d ( t ) ) + 2 x T ( t ) P i Δ A d i x ( t d ( t ) ) + 2 x T ( t ) P i B i K i x ( t ) + 2 x T ( t ) P i B d i K d i x ( t d ( t ) ) + 2 x T ( t ) P i B d i Δ K d i x ( t d ( t ) ) + 2 x T ( t ) P i B i f ( t ) + 2 x T ( t ) P i B d i f ( t d ( t ) ) ,

L V 2 ( x t ) = Ψ T ( t ) ( e 1 T ( R 1 i + d 1 Q 1 ) e 1 e 2 T R 1 i e 2 ) Ψ ( t ) + t d 1 t x T ( s ) ( j = 1 N π i j R 1 j Q 1 ) x ( s ) d s ,

L V 3 ( x t ) = Ψ T ( t ) ( e 1 T ( R 3 i + d 2 Q 2 ) e 1 + m t e 4 T ( R 2 i R 3 i ) e 4 e 3 T R 2 i e 3 ) Ψ ( t ) + t d 2 t d ( t ) x T ( s ) ( j = 1 N π i j ( R 2 j R 3 j ) ) x T ( s ) d s + t d 2 t x T ( s ) ( j = 1 N π i j R 3 j Q 2 ) x ( s ) d s ,

L V 4 ( x t ) = Ψ T ( t ) ( e 5 T ( d 2 2 S 1 + d 12 2 S 2 ) e 5 ) Ψ ( t ) d 2 t d 2 t E T x ˙ T ( s ) S 1 E x ˙ ( s ) d s d 12 t d 2 t d 1 E T x ˙ T ( s ) S 2 E x ˙ ( s ) d s ,

L V 5 ( x t ) = Ψ T ( t ) ( d 1 2 2 e 5 T ( Z 1 + Z 2 ) e 5 ) Ψ ( t ) t d 1 t θ t E T x ˙ T ( s ) Z 1 E x ˙ ( s ) d s d θ t d 1 t t d 1 θ E T x ˙ T ( s ) Z 2 E x ˙ ( s ) d s d θ ,

Ψ ( t ) = [ ψ 1 T ( t ) ψ 2 T ( t ) ψ 3 T ( t ) w T ( t ) ] T ,

ψ 1 ( t ) = [ x T ( t ) x T ( t d 1 ) x T ( t d 2 ) x T ( t d ( t ) ) x ˙ T ( t ) E T ] T ,

ψ 2 ( t ) = [ 1 d ( t ) d 1 t d ( t ) t d 1 x T ( s ) E T d s 1 d 2 d ( t ) t d 2 t d ( t ) x T ( s ) E T d s 1 d ( t ) t d ( t ) t x T ( s ) E T d s 1 d 1 t d 1 t x T ( s ) E T d s ] T ,

ψ 3 ( t ) = [ 1 ( d ( t ) d 1 ) 2 t d ( t ) t d 1 θ t x T ( s ) E T d s d θ 1 ( d 2 d ( t ) ) 2 t d 2 t d ( t ) θ t x T ( s ) E T d s d θ 1 ( d ( t ) ) 2 t d ( t ) t θ t x T ( s ) E T d s d θ 1 d 1 2 t d 1 t θ t x T ( s ) E T d s ] T .

[8] 中引理2,4和假设1,2

2 x T ( t ) P i Δ A i x ( t ) = 2 x T ( t ) P i M i F i ( t ) N i x ( t ) λ i 1 x T ( t ) P i M i M i T P i T x ( t ) + λ i 1 1 x T ( t ) N i T N i x ( t ) ,

2 x T ( t ) P i Δ A d i x ( t d ( t ) ) = 2 x T ( t ) P M i F i ( t ) N d i x ( t d ( t ) ) λ i 2 x T ( t ) P i M i M i T P i T x 1 ( t d ( t ) ) + λ i 2 1 x T ( t ) N d i T N d i x ( t d ( t ) ) ,

2 x T ( t ) P i B i Δ K i x ( t ) = 2 x T ( t ) P i B i M i F i ( t ) N k i x ( t ) λ i 3 x T ( t ) P i B i M i M i T P i T B i T x ( t ) + λ i 3 1 x T ( t ) N k i T N k i x ( t ) ,

2 x T ( t ) P i B i Δ K k d i x ( t d ( t ) ) λ i 4 x T ( t ) P i B i M i M i T P i T B i T x ( t d ( t ) ) + λ i 4 1 x T ( t ) N k d i T N k d i x ( t d ( t ) ) ,

2 x T ( t ) P i B i f ( t ) λ i 5 x T ( t ) P i B i B i T P i T x ( t ) + λ i 5 1 f T ( t ) f ( t ) λ i 5 x T ( t ) P i B i B i T P i T x ( t ) + λ i 5 1 x T ( t ) T 2 x ( t ) ,

2 x T ( t ) P i B d i f ( t d ( t ) ) λ i 6 x T ( t ) P i B d i B d i T P i T x ( t ) + λ i 6 1 f T ( t d ( t ) ) f ( t d ( t ) ) λ i 6 x T ( t ) P i B d i B d i T P i T x ( t ) + λ i 6 1 x T ( t d ( t ) ) T 2 x ( t d ( t ) ) .

L V 1 ( x t ) Ψ T ( t ) [ s y m ( Λ 1 T P i Λ 2 ) + Λ 1 T ( j = 1 N π i j P j ) Λ 1 ] Ψ ( t ) + x T ( t ) [ j = 1 N π i j P j + P i ( 2 A i + 2 B i K + λ i 1 1 N i T N i + λ i 3 1 N k i T N k i + λ i 1 M i M i T P i T + λ i 3 B i M i M i T P i T B i T + λ i 6 B d i B d i T P i T ) + λ i 5 1 T 2 ] x ( t ) + x T ( t ) P i ( 2 A d i + 2 B d i K d i + λ i 2 1 N d i T N d i + λ i 4 1 N k d i T N k d i + λ i 2 M i M i T P i T + λ i 4 B i M i M i T P i T B i T ) x ( t d ( t ) ) + λ i 6 1 x T ( t d ( t ) ) T 2 x ( t d ( t ) ) = Ψ T ( t ) [ s y m ( Λ 1 T P i Λ 2 ) + Λ 1 T ( j = 1 N π i j P j ) Λ 1 + e 1 T Θ 1 e 1 + e 1 T P i Θ 2 e 2 + e 2 T λ i 6 1 T 2 e 2 ] Ψ ( t ) ,

Θ 1 = j = 1 N π i j P j + P i ( 2 A i + 2 B i K + λ i 1 1 N i T N i + λ i 3 1 N k i T N k i + λ i 1 M i M i T P i T + λ i 3 B i M i M i T P i T B i T + λ i 6 B d i B d i T P i T ) + λ i 5 1 T 2 ,

Θ 2 = 2 A d i + 2 B d i K d i + λ i 2 1 N d i T N d i + λ i 4 1 N k d i T N k d i + λ i 2 M i M i T P i T + λ i 4 B i M i M i T P i T B i T ,

[9] 结论1和 [10] 引理3,有

d 2 t d 2 t E T x ˙ T ( s ) S 1 E x ˙ ( s ) d s = d 2 t d ( t ) t E T x ˙ T ( s ) S 1 E x ˙ ( s ) d s d 2 t d 2 t d ( t ) E T x ˙ T ( s ) S 2 E x ˙ ( s ) d s Ψ T ( t ) [ 1 α 1 ( r 1 T S 1 r 1 + 3 r 2 T S 1 r 2 + 5 r 3 T S 1 r 3 ) 1 1 α 1 ( r 4 T S 1 r 4 + 3 r 5 T S 1 r 5 + 5 r 6 T S 1 r 6 ) ] Ψ ( t ) Ψ T ( t ) Γ 1 T [ S ¯ 1 + ( 1 α 1 ) ( S ¯ 1 + ε 1 I Y 1 S ¯ 1 1 Y 1 T ) Y 1 S ¯ 1 + α 1 ( S ¯ 1 + ε 1 I Y 1 T S ¯ 1 1 Y 1 ) ] Γ 1 Ψ ( t ) = Ψ T ( t ) ( μ 1 Γ 1 T Φ 1 Γ 1 ) Ψ T ( t )

d 12 t d 2 t d 1 E x ˙ T ( s ) S 2 E x ˙ ( s ) Ψ T ( t ) ( μ 2 Γ 2 T Φ 2 Γ 2 ) Ψ T ( t )

μ 1 = ( 1 α 1 ) Λ 3 T Y 1 S ¯ 1 1 Y 1 Λ 3 + α 1 Λ 4 T Y 1 S ¯ 1 1 Y 1 Λ 4 , μ 2 = ( 1 α 2 ) Λ 5 T Y 2 S ¯ 2 1 Y 2 Λ 5 + α 2 Λ 6 T Y 2 S ¯ 2 1 Y 2 Λ 6 , S ¯ n = d i a g { S n , 3 S n , 5 S n } ,

根据 [11] 中(9),(10),我们得到

t d 1 t θ t E T x ˙ T ( s ) Z 1 E x ˙ ( s ) d s d θ Ψ T ( t ) [ 2 r 10 T Z 1 r 10 + 4 r 11 T Z 1 r 11 ] Ψ ( t ) = Ψ T ( t ) [ ( Λ 6 T Z ¯ 1 Λ 6 ) ] Ψ ( t ) t d 1 t t d 1 θ E T x ˙ T ( s ) Z 2 E x ˙ ( s ) d s d θ Ψ T ( t ) [ 2 r 12 T Z 2 r 12 + 4 r 13 T Z 2 r 13 ] Ψ ( t ) = Ψ T ( t ) [ ( Λ 7 T Z ¯ 2 Λ 7 ) ] Ψ ( t ) .

通过上述,我们可以得到

L V ( x t ) ξ T ( t ) Ω 0 ξ ( t ) ,

其中 Ω 0 = E 1 i μ | d ( t ) , d ˙ ( t ) + E 2 + η 1 + η 2 ,由Schur补,我们有,

Ω 0 = E 1 i μ | d ( t ) , d ˙ ( t ) + E 2 + η 1 + η 2 < 0 ,

L V ( x t ) < 0 ,

这意味着 L V ( x t ) ς x T ( t ) x ( t ) ,使用Dynkin公式,所有 i I T > 0 ,遵循 i I T > 0

E { V ( x ( T ) , r ( T ) ) } V ( x ( 0 ) , r ( 0 ) ) ς E { 0 T x T ( s ) x ( s ) | ( x ( 0 ) , r ( 0 ) ) } ,

此外,让 T E { 0 T x T ( s ) x ( s ) | ( x ( 0 ) , r ( 0 ) ) } 1 ς V ( x ( 0 ) , r ( 0 ) ) <

根据定义2.1,系统(2.2)是随机稳定的。接下来我们考虑H性能函数J,

J = 0 z T ( t ) z ( t ) γ 2 w T ( t ) w ( t ) d t 0 L V ( x t ) + z T ( t ) z ( t ) γ 2 w T ( t ) w ( t ) d t = 0 Ψ T ( t ) Ω Ψ ( t ) d t ,

我们有 J < 0 。H性能已验证。根据GUTR矩阵的定义,我们要探讨以下三种情况下的上述不等式。

情况I i U k i U k i = { k 1 i , , k m i i } ,存在正定矩阵, V i j R n × n ( i U k i , j U k i ) l U u k i

[ E [ m ] E 12 e z i μ T Π 1 T E ( P k 1 i F i ) Π 1 T E ( P i k m i i F i ) * E 22 0 0 0 * * I 0 0 * * * V i k 1 i 0 * * * * * * * * * V i k m i i ] < 0 ,

证明 i U k i ,应该注意的是,在这种情况下 j U k i , j i π i j = π i i j U k i π i j π i j 0 ,且必须有 l U k i l j

使 E T P ¯ l E E T P ¯ j E 0 ,定义

Ω = Ξ + E 2 + E 3 + Λ 1 T ( j U k i π i j P j + π i i P i + j U k i , j i π i j P j ) Λ 1 + x T ( t ) E T ( j U k i π i j P j + π i i P i + j U k i , j i π i j P j ) x ( t ) , (2.6)

Ω = Ξ + E 2 + E 3 + Λ 1 T j U k i π i j P j Λ 1 + Λ 1 T π i i P i Λ 1 + Λ 1 T j U k i , j i π i j P j Λ 1 + x T ( t ) E T j U k i π i j P j x ( t ) + x T ( t ) E T π i i P i x ( t ) + x T ( t ) E T j U k i , j i π i j P j x ( t ) Ξ + E 2 + E 3 + Λ 1 T j U k i π i j P j Λ 1 + Λ 1 T π i i P i Λ 1 + Λ 1 T ( π i i j U k i π i j ) P l Λ 1 + x T ( t ) E T j U k i π i j P j x ( t ) + x T ( t ) E T π i i P i x ( t ) + x T ( t ) E T ( π i i j U k i π i j ) P l x ( t )

= Ξ + E 2 + E 3 + j U k i π i j Λ 1 T ( P j P l ) Λ 1 + j U k i π i j x T ( t ) E T ( P j P l ) x ( t ) = Ξ + E 2 + E 3 + j U k i ( π ^ i j + π i j ) Λ 1 T ( P j P l ) Λ 1 + j U k i ( π ^ i j + π i j ) x T ( t ) E T ( P j P l ) x ( t ) = Ξ + E 2 + E 3 + j U k i π ^ i j Λ 1 T ( P j P l ) Λ 1 + j U k i π i j Λ 1 T ( P j P l ) Λ 1 + j U k i π ^ i j x T ( t ) E T ( P j P l ) x ( t ) + j U k i π i j x T ( t ) E T ( P j P l ) x ( t ) . (2.7)

此外,由于引理2.1,可以得到

j U k i π i j Λ 1 T ( P j P l ) Λ 1 + j U k i π i j E T x T ( t ) ( P j P l ) x ( t ) = j U k i [ 1 2 π i j Λ 1 T ( P j P l ) Λ 1 + 1 2 π i j Λ 1 T ( P j P l ) Λ 1 ] + j U k i [ 1 2 π i j E T x T ( t ) ( P j P l ) x ( t ) + 1 2 π i j E T x T ( t ) ( P j P l ) x ( t ) ] j U k i [ δ i j 1 2 4 V i j 1 + Λ 1 T ( P j P l ) Λ 1 V i j 1 1 Λ 1 T ( P j P l ) Λ 1 ] + j U k i [ δ i j 2 2 4 V i j 2 + E T x T ( t ) ( P j P l ) x ( t ) V i j 2 1 E T x T ( t ) ( P j P l ) x ( t ) ] , (2.8)

从(2.6)~(2.8)中,我们有

Ω Ξ + E 2 + j U k i π ^ i j Λ 1 T ( P j P l ) Λ 1 + j U k i δ i j 1 2 4 V i j 1 + j U k i [ Λ 1 T ( P j P l ) Λ 1 V i j 1 1 Λ 1 T ( P j P l ) Λ 1 ] + j U k i δ i j 2 2 4 V i j 2 + j U k i [ E T x T ( t ) ( P j P l ) x ( t ) V i j 2 1 E T x T ( t ) ( P j P l ) x ( t ) ] + j U k i π ^ i j E T x T ( t ) ( P j P l ) x ( t ) (2.9)

如果,

Ξ + E 2 + j U k i π ^ i j Λ 1 T ( P j P l ) Λ 1 + j U k i δ i j 1 2 4 V i j 1 + j U k i [ Λ 1 T ( P j P l ) Λ 1 V i j 1 1 Λ 1 T ( P j P l ) Λ 1 ] + j U k i δ i j 2 2 4 V i j 2 + j U k i [ E T x T ( t ) ( P j P l ) x ( t ) V i j 2 1 E T x T ( t ) ( P j P l ) x ( t ) ] + j U k i π ^ i j E T x T ( t ) ( P j P l ) x ( t ) < 0 (2.10)

Ω < 0 ,由引理2.2有(2.10)成立。可以看出

L V ( x t ) γ 2 w T ( t ) w ( t ) z T ( t ) z ( t ) .

由定义2.2,系统(2.2)在H扰动水平为零时,是随机允许的 γ

情况II i U k i U k i ,存在正定矩阵, G i j R n × n ( i , j U k i , l U u k i )

[ E [ m ] E 12 e z i μ T Π 1 T E ( P k 1 i F i ) Π 1 T E ( P i k m i i F i ) * E 22 0 0 0 * * I 0 0 * * * G i k 1 i 0 * * * * * * * * * G i k m i i ] < 0 ,

证明 i U k i U u k i ,必须有 l U u k i E T P ( l ) E E T P ( j ) E 0 j U u k i 。因为它认为

Ω = Ξ + E 2 + E 3 + Λ 1 T ( j U k i π i j P j + π i i P i + j U u k i π i j P j ) Λ 1 + x T ( t ) E T ( j U k i π i j P j + π i i P i + j U u k i π i j P j ) x ( t ) ,

然后我们有

Ω Ξ + E 2 + E 3 + Λ 1 T ( j U k i π i j P j + j U u k i π i j P l ) Λ 1 + E T x T ( t ) ( j U k i π i j P j + j U u k i π i j P l ) x ( t ) = Ξ + E 2 + E 3 + j U k i π i j Λ 1 T P j Λ 1 j U k i π i j Λ 1 T P l Λ 1 + j U k i π i j x T ( t ) E T P j x ( t ) j U k i π i j x T ( t ) E T P l x ( t ) = Ξ + E 2 + E 3 + j U k i ( π ^ i j + π i j ) Λ 1 T ( P j P l ) Λ 1 + j U k i ( π ^ i j + π i j ) x T ( t ) E T ( P j P l ) x ( t ) = Ξ + E 2 + E 3 + j U k i π ^ i j Λ 1 T ( P j P l ) Λ 1 + j U k i π i j Λ 1 T ( P j P l ) Λ 1 + j U k i π ^ i j x T ( t ) E T ( P j P l ) x ( t ) + j U k i π i j x T ( t ) E T ( P j P l ) x ( t ) ,

此外,由于引理2.2,我们可以得到

j U k i π i j Λ 1 T ( P j P l ) Λ 1 + j U k i π i j E T x T ( t ) ( P j P l ) x ( t ) = j U k i [ 1 2 π i j Λ 1 T ( P j P l ) Λ 1 + 1 2 π i j Λ 1 T ( P j P l ) Λ 1 ] + j U k i [ 1 2 π i j E T x T ( t ) ( P j P l ) x ( t ) + 1 2 π i j E T x T ( t ) ( P j P l ) x ( t ) ] j U k i [ δ i j 1 2 4 G i j 1 + Λ 1 T ( P j P l ) Λ 1 G i j 1 1 Λ 1 T ( P j P l ) Λ 1 ] + j U k i [ δ i j 2 2 4 G i j 2 + E T x T ( t ) ( P j P l ) x ( t ) G i j 2 1 E T x T ( t ) ( P j P l ) x ( t ) ] , (2.11)

另外,我们有

Ω Ξ + E 2 + E 3 + j U k i π ^ i j Λ 1 T ( P j P l ) Λ 1 + j U k i δ i j 1 2 4 G i j 1 + j U k i [ Λ 1 T ( P j P l ) Λ 1 G i j 1 1 Λ 1 T ( P j P l ) Λ 1 ] + j U k i π ^ i j E T x T ( t ) ( P j P l ) x ( t ) + j U k i δ i j 2 2 4 G i j 2 + j U k i [ E T x T ( t ) ( P j P l ) x ( t ) G i j 2 1 E T x T ( t ) ( P j P l ) x ( t ) ] , (2.12)

如果

Ξ + E 2 + E 3 + j U k i π ^ i j Λ 1 T ( P j P l ) Λ 1 + j U k i [ Λ 1 T ( P j P l ) E T Λ 1 G i j 1 1 Λ 1 T ( P j P l ) Λ 1 ] + j U k i δ i j 1 2 4 G i j 1 + j U k i [ E T x T ( t ) ( P j P l ) x ( t ) G i j 2 1 E T x T ( t ) ( P j P l ) x ( t ) ] + j U k i δ i j 2 2 4 G i j 2 + j U k i π ^ i j E T x T ( t ) ( P j P l ) x ( t ) < 0 , (2.13)

因此 Ω < 0 ,由引理2.2有(2.13)成立。可以看出 L V ( x t ) γ 2 w T ( t ) w ( t ) z T ( t ) z ( t ) 。由定义2.2,系统(2.2)在H扰动水平为零时是随机允许的 γ

情况III i U k i U u k i = ,存在正定矩阵, L i j R n × n ( i , j U k i )

[ E [ m ] E 12 e z i μ T Π 1 T E ( P k 1 i F i ) Π 1 T E ( P i k m i i F i ) * E 22 0 0 0 * * I 0 0 * * * L i k 1 i 0 * * * * * * * * * L i k m i i ] < 0 ,

证明 i U k i U u k i = 。同样,它认为

Ω = Ξ + E 2 + E 3 + Λ 1 T j = 1 , j i s π i j P j Λ 1 + Λ 1 T π i i P i Λ 1 + x T ( t ) E T j = 1 , j i s π i j P j x ( t ) + x T ( t ) E T π i i P i x ( t ) = Ξ + E 2 + E 3 + Λ 1 T j = 1 , j i s π i j ( P j P i ) Λ 1 + x T ( t ) E T j = 1 , j i s π i j ( P j P i ) x ( t ) = Ξ + E 2 + E 3 + Λ 1 T j = 1 , j i s ( π ^ i j + π i j ) ( P j P i ) Λ 1 + x T ( t ) E T j = 1 , j i s ( π ^ i j + π i j ) ( P j P i ) x ( t ) Ξ + E 2 + E 3 + j U k i π ^ i j Λ 1 T ( P j P i ) Λ 1 + j U k i δ i j 1 2 4 L i j 1 + j U k i [ Λ 1 T ( P j P i ) Λ 1 L i j 1 1 Λ 1 T ( P j P i ) Λ 1 ] + j U k i [ E T x T ( t ) ( P j P i ) x ( t ) L i j 2 1 E T x T ( t ) ( P j P i ) x ( t ) ] + j U k i π ^ i j E T x T ( t ) ( P j P i ) x ( t ) + j U k i δ i j 2 2 4 L i j 2 ,

如果

Ξ + E 2 + E 3 + j U k i π ^ i j Λ 1 T ( P j P l ) Λ 1 + j U k i δ i j 1 2 4 L i j 1 + j U k i π ^ i j E T x T ( t ) ( P j P l ) x ( t ) + j U k i δ i j 2 2 4 L i j 2 + j U k i [ Λ 1 T ( P j P l ) Λ 1 L i j 1 1 Λ 1 T ( P j P l ) Λ 1 ] + j U k i [ E T x T ( t ) ( P j P l ) x ( t ) L i j 2 1 E T x T ( t ) ( P j P l ) x ( t ) ] < 0 (2.14)

Ω < 0 ,引理2.2,(2.14)成立可以看出

L V ( x t ) γ 2 w T ( t ) w ( t ) z T ( t ) z ( t ) .

由定义2.2可知,系统(2.2)在扰动水平为H时为零时是随机允许的 γ 。考虑具有恒定延迟 h 2 的SMJs,其中的参数与 [8] 中的参数相同,数值示例说明本文比以前方法有效更通用见 表1

<xref></xref>Table 1. Upper bound contrastTable 1. Upper bound contrast 表1. 上界对比

比较结果

d

[8]

1.2362

本文 ε = 0

1.4731

本文 ε = 2

1.5836

E = [ 1 0 0 0 ] , A = [ 0.4972 0 0 0.9541 ] , A d = [ 1.4972 1.5415 0 0.5449 ] , M = [ 1 0 0 1 ] , N = [ 2 1 1 1 ] , M E N = [ 1 0 0 0 ] ,

此外,我们选择

Σ = [ 0.1 0.4 0.2 0.5 ] , B = [ 1 0 ] , B d = [ 2 1 ] , B w = [ 1 2.5 ] , C = [ 1 0 ] , C d = [ 0.3 0.3 ] , D w = [ 1 1.5 3 2 ] , H R = 4 , γ = 0.1.

为了验证所提出的方法绘制了 x ( 0 ) = [ 0 0 ] T w ( t ) = [ 1 0 ] T sin e 0.2 t 可以看出SNJs状态响应收敛于零见 图1

Figure 1. x( t ) status response with external input w( t )--图1. 具有外部输入 w( t ) 的 x( t ) 状态响应--

备注2.2:与一般的LKF相比,乘以更多的积分项,利用了更多的时变延迟信息,在增强的LKF中减少保守性。(2.21)和(2.22)中的条件可以通过使用 [10] 引理3得到更紧的界限。因此,本文定理的保守性比Wang等 [12] 、Fu和Ma [13] 更低。

3. 结论

对于给定的标量本章探讨一类非线性广义Markov跳跃系统的随机稳定性和H控制问题。设计新型的Lyapunov-Krasovkii泛函(LKF),构造适当的Lyapunov-Krasovskii泛函,应用依赖参数相关的互复凸矩阵不等式(PDRCMI)、改进的Wirtinger不等式,Chen提出的广义积分不等式,通过LMI,得到保守性较低的准则。同时,引入参数依赖的互凸矩阵不等式(PDRCMI)来降低保守性,保证了非线性广义Markov跳跃系统渐进稳定并满足性能。此外,将自适应方法应用于MJSs具有现实意义,值得进一步探索。值得一提的是,我们的理论结果也可以在未来更复杂的系统。

References Boukas, E.-K. (2005) Stochastic Switching Systems: Analysis and Design. Birkhauser. Dai, L. (1989) Singular Control Systems. Springer Verlag. >https://doi.org/10.1007/BFb0002475 Lu, R.Q., Su, H.Y., Xue, A.K. and Chu, J. (2008) Robust Control Theory of Singular Systems. Science Press. Shi, P., Boukas, E.-K. and Agarwal, R.K. (2000) Robust H Control of Singular Continuous-Time Systems with Delays and Uncertainties. Proceedings of the 39th Conference on Decision and Control, Sidney, 12-15 December 2000, 1515-1520. Xu, S. and Lam, J. (2006) Robust Control and Filtering of Singular Systems. Springer Verlag. 郑成德, 肖岩, 贾贺贺. 中立型Markov脉冲神经网络的随机稳定性[J]. 大连交通大学学报, 2019, 40(4): 116-120. Zong, G. and Ren, H. (2019) Guaranteed Cost Finite-Time Control for Semi-Markov Jump Systems with Event-Triggered Scheme and Quantization Input. International Journal of Robust and Nonlinear Control, 29, 5251-5273. >https://doi.org/10.1002/rnc.4672 Ma, Y.C., Chen, M.H. and Zhang, Q.L. (2015) Memory Dissipative Control for Singular T-S Fuzzy Time-Varying Delay Systems under Actuator Saturation. Journal of the Franklin Institute, 352, 3947-3970. >https://doi.org/10.1016/j.jfranklin.2015.05.030 Kim, J.-H. (2016) Further Improvement of Jensen Inequality and Application to Stability of Time-Delayed Systems. Automatica, 64, 121-125. >https://doi.org/10.1016/j.automatica.2015.08.025 Tian, Y.F., Wang, Y.Z. and Ren, J.C. (2020) Stability Analysis and Control Design of Singular Markovian Jump Systems via a Parameter-Dependent Reciprocally Convex Matrix Inequality. Applied Mathematics and Computation, 386, Article 125471. >https://doi.org/10.1016/j.amc.2020.125471 Chen, J., Xu, S.Y., Chen, W.M., Zhang, B.Y., Ma, Q. and Zou, Y. (2016) Two General Integral Inequalities and Their Applications to Stability Analysis for Systems with Time-Varying Delay. International Journal of Robust and Nonlinear Control, 26, 4088-4103. >https://doi.org/10.1002/rnc.3551 Wang, J.R., Wang, H.J., Xue, A.K. and Lu, R.Q. (2013) Delay-Dependent H Control for Singular Markovian Jump Systems with Time Delay. Nonlinear Analysis: Hybrid Systems, 8, 1-12. >https://doi.org/10.1016/j.nahs.2012.08.003 Fu, L. and Ma, Y.C. (2018) Dissipative Filtering for Singular Markov Jump Systems with Generally Uncertain Transition Rates via New Integral Inequality Approach. Journal of the Franklin Institute, 355, 7354-7383. >https://doi.org/10.1016/j.jfranklin.2018.07.023
Baidu
map