Figure 24. Synthesis of indene by the Heck reaction--图24. 通过Heck反应合成茚--Figure 25. Enantioselective synthesis of 2,3-disubstituted indenes--图25. 2,3-二取代茚的不对称合成--4. 总结
References
Tian, X., Chaiworn, S., Xu, J., Vanthuyne, N., Baldridge, K.K. and Siegel, J.S. (2021) Thiophene Fused Indenocorannulenes: Synthesis, Variable Emission, and Exceptional Chiral Configurational Stability. Organic Chemistry Frontiers, 8, 3653-3658. >https://doi.org/10.1039/d1qo00596k
Kalita, G., Paul, D., Khatua, S. and Chatterjee, P.N. (2020) Para-Toluenesulfonic Acid Catalyzed Synthesis of Indenes via a Tandem Friedel-Crafts Alkylation/Hydroarylation of Tertiary Propargylic Alcohols with Electron-Rich Arenes. Catalysis Letters, 150, 2132-2139. >https://doi.org/10.1007/s10562-020-03220-0
Kharitonov, V.B., Muratov, D.V. and Loginov, D.A. (2019) Indenyl Complexes of Group 9 Metals: Synthetic and Catalytic Chemistry. Coordination Chemistry Reviews, 399, Article ID: 213027. >https://doi.org/10.1016/j.ccr.2019.213027
Trost, B.M. and Ryan, M.C. (2017) Indenylmetal Catalysis in Organic Synthesis. Angewandte Chemie International Edition, 56, 2862-2879. >https://doi.org/10.1002/anie.201609054
Koby, R.F., Schley, N.D. and Hanusa, T.P. (2021) Di(indenyl)beryllium. Angewandte Chemie International Edition, 60, 21174-21178. >https://doi.org/10.1002/anie.202107980
Yuan, J., Zhang, Y., Yu, H., Wang, C., Meng, S., Chen, J., et al. (2022) Transition Metal Complexes with Functionalized Indenyl Phosphine Ligands: Structures and Catalytic Properties. Organic&Biomolecular Chemistry, 20, 485-497. >https://doi.org/10.1039/d1ob01884a
Malenov, D.P. and Zarić, S.D. (2020) Stacking Interactions between Indenyl Ligands of Transition Metal Complexes: Crystallographic and Density Functional Study. Crystal Growth&Design, 20, 4491-4502. >https://doi.org/10.1021/acs.cgd.0c00303
Mondal, S., Dumur, F., Gigmes, D., Sibi, M.P., Bertrand, M.P. and Nechab, M. (2022) Enantioselective Radical Reactions Using Chiral Catalysts. Chemical Reviews, 122, 5842-5976. >https://doi.org/10.1021/acs.chemrev.1c00582
Wang, J., Zhou, Y., Zhang, L., Li, Z., Chen, X. and Liu, H. (2013) Asymmetric Michael Addition of N-tert-Butanesulfinyl Imidate with α,β-Unsaturated Diesters: Scope and Application to the Synthesis of Indanone Derivatives. Organic Letters, 15, 1508-1511. >https://doi.org/10.1021/ol400277h
Satyanarayana, G., Ramulu, B. and Niharika, P. (2015) Superacid-Promoted Dual C-C Bond Formation by Friedel-Crafts Alkylation/Acylation of Cinnamate Esters: Synthesis of Indanones. Synthesis, 47, 1255-1268. >https://doi.org/10.1055/s-0034-1380385
Fillion, E. and Fishlock, D. (2009) Scandium Triflate-Catalyzed Intramolecular Friedel-Crafts Acylation with Meldrum’s Acids: Insight into the Mechanism. Tetrahedron, 65, 6682-6695. >https://doi.org/10.1016/j.tet.2009.05.058
Wanibuchi, K., Hosoda, K., Ihara, M., Tajiri, K., Sakai, Y., Masui, H., et al. (2018) Indene Compounds Synthetically Derived from Vitamin D Have Selective Antibacterial Action on Helicobacter pylori. Lipids, 53, 393-401. >https://doi.org/10.1002/lipd.12043
Titov, A.A., Kobzev, M.S., Catto, M., Candia, M.D., Gambacorta, N., Denora, N., et al. (2021) Away from Flatness: Unprecedented Nitrogen-Bridged Cyclopenta[a]indene Derivatives as Novel Anti-Alzheimer Multitarget Agents. ACS Chemical Neuroscience, 12, 340-353. >https://doi.org/10.1021/acschemneuro.0c00706
Sanz Garcia, J., Gaschard, M., Navizet, I., Sahihi, M., Top, S., Wang, Y., et al. (2022) Inhibition of Cathepsin B by Ferrocenyl Indenes Highlights a New Pharmacological Facet of Ferrocifens. European Journal of Inorganic Chemistry, 2022, e202101075. >https://doi.org/10.1002/ejic.202101075
Guan, X., Luo, P., He, Q., Hu, Y. and Ying, H. (2016) Design, Synthesis and Evaluation of Indene Derivatives as Retinoic Acid Receptor α Agonists. Molecules, 22, Article No. 32. >https://doi.org/10.3390/molecules22010032
Kim, J.A., Yun, H., Choi, Y., Kim, J., Choi, S., Kwon, T., et al. (2018) Magnesium Phosphate Ceramics Incorporating a Novel Indene Compound Promote Osteoblast Differentiation in Vitro and Bone Regeneration in Vivo. Biomaterials, 157, 51-61. >https://doi.org/10.1016/j.biomaterials.2017.11.032
Xia, Z., Zhang, Z., Su, J., Zhang, Q., Fung, K., Lam, M., et al. (2010) Robust and Highly Efficient Blue Light-Emitting Hosts Based on Indene-Substituted Anthracene. Journal of Materials Chemistry, 20, 3768-3774. >https://doi.org/10.1039/c000092b
Du, M., Xiao, Y., Geng, Y., Chen, Y., Jiang, H., Dong, C., et al. (2022) Application of Indacenodiselenophene Central Core and Modulation of Terminal Group Interaction for High-Efficient P3HT-Based Organic Solar Cells. Journal of Materials Chemistry C, 10, 10114-10123. >https://doi.org/10.1039/d2tc01855a
Wilkinson, G., Rosenblum, M., Whiting, M.C. and Woodward, R.B. (1952) The Structure of Iron Bis-Cyclopentadienyl. Journal of the American Chemical Society, 74, 2125-2126. >https://doi.org/10.1021/ja01128a527
Lauher, J.W. and Hoffmann, R. (1976) Structure and Chemistry of Bis(cyclopentadienyl)-MLn Complexes. Journal of the American Chemical Society, 98, 1729-1742. >https://doi.org/10.1021/ja00423a017
McKnight, A.L. and Waymouth, R.M. (1998) Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. Chemical Reviews, 98, 2587-2598. >https://doi.org/10.1021/cr940442r
Kowaleski, R.M., Rheingold, A.L., Trogler, W.C. and Basolo, F. (1986) Synthesis and Structure of Dicarbonyl(.eta.3-Indenyl)(.eta.5-Indenyl)vanadium(II). An Unusual Slipped Ring in a Metal Radical. Journal of the American Chemical Society, 108, 2460-2461. >https://doi.org/10.1021/ja00269a062
Chen, Z. and Halterman, R.L. (1992) Enantioselective Catalytic Isomerization of an Unfunctionalized Achiral Alkene. Journal of the American Chemical Society, 114, 2276-2277. >https://doi.org/10.1021/ja00032a062
Negishi, E., Choueiry, D., Nguyen, T.B., Swanson, D.R., Suzuki, N. and Takahashi, T. (1994) Nonconcerted Paths for Reactions of Alkene-Zirconocene Complexes. Journal of the American Chemical Society, 116, 9751-9752. >https://doi.org/10.1021/ja00100a051
Colletti, S.L. and Halterman, R.L. (1992) Asymmetric Epoxidation of Unfunctionalized Alkenes Using the New C
2-Symmetrical 1,1’-Binaphthyl-2,2’-Dimethylene-Bridged ansa-Bis(1-Indenyl)titanium Dichloride Catalyst. Tetrahedron Letters, 33, 1005-1008. >https://doi.org/10.1016/s0040-4039(00)91845-8
Erker, G., Aulbach, M., Knickmeier, M., Wingbermuehle, D., Krueger, C., Nolte, M., et al. (1993) The Role of Torsional Isomers of Planarly Chiral Nonbridged Bis(indenyl)metal Type Complexes in Stereoselective Propene Polymerization. Journal of the American Chemical Society, 115, 4590-4601. >https://doi.org/10.1021/ja00064a022
Kondakov, D.Y. and Negishi, E. (1995) Zirconium-Catalyzed Enantioselective Methylalumination of Monosubstituted Alkenes. Journal of the American Chemical Society, 117, 10771-10772. >https://doi.org/10.1021/ja00148a031
Negishi, E., Tan, Z., Liang, B. and Novak, T. (2004) An Efficient and General Route to Reduced Polypropionates via Zr-Catalyzed Asymmetric C-C Bond Formation. Proceedings of the National Academy of Sciences, 101, 5782-5787. >https://doi.org/10.1073/pnas.0307514101
Parfenova, L.V., Berestova, T.V., Tyumkina, T.V., Kovyazin, P.V., Khalilov, L.M., Whitby, R.J., et al. (2010) Enantioselectivity of Chiral Zirconocenes as Catalysts in Alkene Hydro-, Carbo-and Cycloalumination Reactions. Tetrahedron: Asymmetry, 21, 299-310. >https://doi.org/10.1016/j.tetasy.2010.01.001
Kondakov, D.Y. and Negishi, E. (1996) Zirconium-Catalyzed Enantioselective Alkylalumination of Monosubstituted Alkenes Proceeding via Noncyclic Mechanism. Journal of the American Chemical Society, 118, 1577-1578. >https://doi.org/10.1021/ja953655m
Liang, B., Novak, T., Tan, Z. and Negishi, E. (2006) Catalytic, Efficient, and syn-Selective Construction of Deoxypolypropionates and Other Chiral Compounds via Zr-Catalyzed Asymmetric Carboalumination of Allyl Alcohol. Journal of the American Chemical Society, 128, 2770-2771. >https://doi.org/10.1021/ja0530974
Singh, P.P., Reddy, P.B., Sawant, S.D., Koul, S., Taneja, S.C. and Kumar, H.M.S. (2006) Domino Synthesis of Indenols and Alkyl-Indene Ethers under Modified Vilsmeier Conditions. Tetrahedron Letters, 47, 7241-7243. >https://doi.org/10.1016/j.tetlet.2006.07.126
Basavaiah, D., Reddy, B.S. and Lingam, H. (2013) Baylis-Hillman Acetates in Carbocyclic Synthesis: A Convenient Protocol for Synthesis of Densely Substituted Indenes. Tetrahedron, 69, 1994-2003. >https://doi.org/10.1016/j.tet.2012.12.069
Xu, X., Shao, J., Hu, P., Hong, G., Fang, M. and Li, X. (2014) Palladium-Catalyzed Synthesis of Indene Derivatives via Intramolecular Allylic Arylation of Baylis-Hillman Acetates. Synlett, 25, 1009-1013. >https://doi.org/10.1055/s-0033-1340830
Liu, L., Fan, Y., He, Q., Zhang, Y., Zhang-Negrerie, D., Huang, J., et al. (2012) Synthesis of Functionalized Fluorescent Indenes from Electron-Rich α-Aryl Ketonitriles. The Journal of Organic Chemistry, 77, 3997-4004. >https://doi.org/10.1021/jo300367q
Wang, Z., Li, Y., Chen, F., Qian, P. and Cheng, J. (2021) The Intramolecular Reaction of Acetophenone n-Tosylhydrazone and Vinyl: Brønsted Acid-Promoted Cationic Cyclization toward Polysubstituted Indenes. Chemical Communications, 57, 1810-1813. >https://doi.org/10.1039/d0cc07966a
Vicente, R., Tudela, E., Rodríguez, M.A., Suárez-Sobrino, Á.L. and Ballesteros, A. (2022) Gold-Catalysed Rearrangement of Unconventional Cyclopropane-Tethered 1,5-Enynes. Chemical Communications, 58, 8206-8209. >https://doi.org/10.1039/d2cc02869g
Thilmany, P., Guarnieri-Ibáñez, A., Jacob, C., Lacour, J. and Evano, G. (2021) Straightforward Synthesis of Indenes by Gold-Catalyzed Intramolecular Hydroalkylation of Ynamides. ACS Organic&Inorganic Au, 2, 53-58. >https://doi.org/10.1021/acsorginorgau.1c00021
Yamazaki, S., Katayama, K., Wang, Z., Mikata, Y., Morimoto, T. and Ogawa, A. (2021) Sequential Knoevenagel Condensation/Cyclization for the Synthesis of Indene and Benzofulvene Derivatives. ACS Omega, 6, 28441-28454. >https://doi.org/10.1021/acsomega.1c05283
Zhao, X., Fan, C., He, J. and Luo, Y. (2022) Rh-Catalyzed [3+2] Annulation of Cyclic Ketimines and Alkynyl Chloride: A Strategy for Accessing Unsymmetrically Substituted and Highly Functionalizable Indenes. Organic Letters, 24, 9169-9173. >https://doi.org/10.1021/acs.orglett.2c02717
Deng, C., Jiang, L., Yao, J., Liang, Q., Miao, L., Li, C., et al. (2022) Rhodium(III)-Catalyzed Sequential Cyclization of n-Boc Hydrazones with Propargylic Monofluoroalkynes via C-H Activation/C-F Cleavage for the Synthesis of Spiro[cyclobutane-1,9’-indeno[1,2-α]indenes]. The Journal of Organic Chemistry, 87, 6105-6114. >https://doi.org/10.1021/acs.joc.2c00372
Wang, C., Wu, C., Yang, Y., Xing, J. and Dou, X. (2022) Rhodium-Catalyzed Formal [2+2+1] Annulation of Arylboronic Acids with Alkynes. Organic Chemistry Frontiers, 9, 6915-6919. >https://doi.org/10.1039/d2qo01464e
Zhang, T., Zhang, C., Lu, X., Peng, C., Zhang, Y., Zhu, X., et al. (2024) Synthesis of Silyl Indenes by Ruthenium-Catalyzed Aldehyde-And Acylsilane-Enabled C-H Alkylation/Cyclization. Organic&Biomolecular Chemistry, 22, 466-471. >https://doi.org/10.1039/d3ob01699d
Wei, D., Lu, H., Miao, H., Feng, C., Lin, G. and Liu, Y. (2023) Pd-Catalyzed Intermolecular Consecutive Double Heck Reaction “on Water” under Air: Facile Synthesis of Substituted Indenes. RSC Advances, 13, 19312-19316. >https://doi.org/10.1039/d3ra03510g
Sun, Y., Pan, J., Wang, X., Bu, X., Ma, M. and Xue, F. (2023) Rhodium-Catalyzed Asymmetric Annulation of Unactivated Alkynes with 3-(ortho-Boronated Aryl) Conjugated Enones: Enantioselective Synthesis of 2,3-Disubstituted Indenes. The Journal of Organic Chemistry, 88, 6140-6145. >https://doi.org/10.1021/acs.joc.2c02957