jocr Journal of Organic Chemistry Research 2330-5231 2330-524X beplay体育官网网页版等您来挑战! 10.12677/jocr.2024.122033 jocr-90210 Articles 化学与材料 铁棒锤中的二萜生物碱
Diterpenoid Alkaloids from Aconitum pendulum Busch
何少军 许纪龙 余祥浪 兰州交通大学化学化工学院,甘肃 兰州 01 04 2024 12 02 353 358 18 3 :2024 19 3 :2024 19 6 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 目的:研究铁棒锤Aconitum pendulum Busch的化学成分。方法:铁棒锤提取物采用大孔树脂,硅胶柱层析以及半制备高效液相色谱对其进行分离纯化,根据其波谱数据进行结构解析。结果:从其中分离得到10个化合物,分别鉴定为Songorine (1)、15-acetylsongorine (2)、12-epi-lucidusculine (3)、14-O-acetylneoline (4)、benzoylaconitine (5)、aconitine (6)、3-deoxyaconitine (7)、mesaconitine (8)、10-aconifine (9)、flavaconitine (10)。
Objective: This study aims to analyze the chemical composition of Aconitum pendulum Busch. Methods: The extracts obtained from Aconitum pendulum Busch were purified using macroporous resin, silica gel column chromatography, and semi-preparative high-performance liquid chromatography. The structural analyses were conducted based on their spectral data. Results: Ten compounds were isolated from them and identified as Songorine (1), 15-acetylsongorine (2), 12-epi-lucidusculine (3), 14-O-acetylneoline (4), benzoylaconitine (5), aconitine (6), 3-deoxyaconitine (7), mesaconitine (8), 10-aconifine (9), flavaconitine (10).
铁棒锤,二萜生物碱,化学成分,乌头属
Aconitum pendulum Busch
Diterpenoid Alkaloid Chemical Composition Aconitum carmichaelii Debeaux
1. 引言

铁棒锤(Aconitum pendulum Busch)为毛茛科,乌头属多年生草本植物。植物智中记载其别名,铁牛七、雪上一枝蒿、一支箭。根呈块根倒圆锥形,茎高26~100厘米,无毛,叶片形状似伏毛铁棒锤,7~9月开花。主要分布于西藏、云南西北部、四川西部、青海、甘肃南部、陕西南部及河南西部。生海拔2800~4500米,山地或林边。《陕西中草药》中记载其块根有剧毒、供药用、治疗跌打损伤、骨折、风湿腰痛、冻疮等。铁棒锤主要活性成分为二萜生物碱、黄酮、多糖、甾体等活性成分。现代药理研究发现该植物所含乌头类生物碱成分,具有显著的镇痛麻醉、抗炎、抗肿瘤等作用 [1] [2] [3] ,并且其所含的二萜生物碱具有优良的杀虫效果 [4] 。铁棒锤是从亳州市场购买所得,将其干燥母根粉碎后用甲醇浸泡,通过减压浓缩得到总浸膏,对总浸膏通过调节pH值使用二氯甲烷进行萃取,得到二氯(酸萃取)部分和二氯(碱萃取)部分。进行减压浓缩后,通过薄层色谱分析(TLC)观察化合物极性大小,使用不同的色谱柱层析和半制备高效液相色谱(HPLC)进行分离纯化得到单体化合物,利用核磁共振波谱(NMR)、质谱、红外、紫外进行化合物结构解析。通过以上方法,分离纯化鉴定出10个单体化合物。

2. 结果与讨论 2.1. 化合物的结构鉴定

根据化合物的理化性质,通过核磁共振氢谱、碳谱、二维谱图等对分离出的10个单体化合物进行结构解析。

1) songorine

白色无定形粉末,易溶于甲醇和DMSO,改良碘化铋钾呈阳性;综合1H-NMR与13C-NMR数据推测该化合物分子式为C22H31NO3。化合物3的1H-NMR (500 MHz, Dimethyl Sulfoxide-d6)显示了环外双键[δH5.06 1H, brs, H-17a; δH5.11 1H, brs, H-17b; δC150.0; δC110.8; ]和N-乙基[δH1.33 (3H, t, J = 7. 1 Hz)]的信号。13C-NMR (125 MHz, Dimethyl Sulfoxide-d6) δc:67.4(C-1),29.7(C-2),35.8(C-3),35.0(C-4),46.6(C-5),21.5(C-6),42.9(C-7),47.6(C-8),36.2(C-9),52.4(C-10),37.4(C-11),208.1(C-12),53.2(C-13),30.7(C-14),75.0(C-15),150.0(C-16),110.8(C-17),24.9(C-18),55.1(C-19),65.0(C-20),53.4(C-21),9.7(C-22)。通过查阅文献 [5] 。与其报道的数据一致,确定该化合物为songorine。

2) 15-acetylsongorine

无色晶体,易溶于甲醇和二氯,改良碘化铋钾呈阳性;通过1H-NMR与13C-NMR数据推测该化合物分子式为C24H33NO4。化合物4的1H-NMR (500 MHz, Chloroform-d)显示了环外双键[δH4.98 1H, brs, H-17a; δH5.30 1H, brs, H-17b; δC144.2; δC113.8;],N-乙基[δH1.33 (3H, t, J = 7. 1 Hz)]和乙酰基[δH0.923H, s, OCH3; δC170.4; δC21.6]的信号。13C-NMR (125 MHz, Chloroform-d)δc:68.4(C-1),29.4(C-2),32.3(C-3),35.8(C-4),48.3(C-5),23.6(C-6),43.6(C-7),53.9(C-8),37.0(C-9),48.3(C-10),38.3(C-11),207.6(C-12),55.1(C-13),37.4(C-14),76.0(C-15),144.2(C-16),113.8(C-17),25.8(C-18),56.0(C-19),66.3(C-20),53.6(C-21),10.3(C-22),170.4(COCH3),21.6(COCH3)。通过查阅文献 [6] 。与其报道的数据一致,确定该化合物为15-acetylsongorine。

3) 12-epi-lucidusculine

白色无定形粉末,易溶于甲醇,改良碘化铋钾呈阳性;通过1H-NMR与13C-NMR数据推测该化合物分子式为C24H35NO4。化合物7的1H-NMR (500 MHz, Methanol-d4)显示了环外双键[δH5.13 1H, brs, H-17a; δH5.63 1H, brs, H-17b; δC148.4; δC114.8;],N-乙基[δH1.39 (3H, t, J = 7. 2 Hz)]和乙酰基[δH0.92 3H, s, OCH3; δC170.8; δC21.8]的信号。13C-NMR (125 MHz, Chloroform-d)δc:68.6(C-1),29.8(C-2),37.0(C-3),35.8(C-4),47.5(C-5),24.0(C-6),44.1(C-7),49.1(C-8),41.0(C-9),54.7(C-10),29.8(C-11),66.5(C-12),44.1(C-13),32.7(C-14),76.0(C-15),148.4(C-16),114.8(C-17),26.0(C-18),56.5(C-19),65.9(C-20),53.9(C-21),10.4(C-22),170.8(COCH3),21.8(COCH3)。通过查阅文献 [6] 。与其报道的数据一致,确定该化合物为12-epi-lucidusculine。

4) 14-O-acetylneoline

白色无定形粉末,易溶于甲醇和氯仿,与改良碘化铋钾试剂呈现阳性反应;通过1H-NMR与13C-NMR数据推测该化合物分子式为C26H46NO7。化合物8的1H-NMR(500MHz, Methanol-d4)显示了单取代乙酰基[δH2.06(3H, s, COMe)]和一个氮乙基[δH1.17(3H, t, J = 7.2Hz)]的信号,三个甲氧基[δH3.38、3.34和3.35(各3H, s)]。δc:73.7(C-1),30.5(C-2),30.7(C-3),39.3(C-4),45.4(C-5),84.7(C-6),55.0(C-7),75.0(C-8),45.6(C-9),44.6(C-10),50.7(C-11),30.32(C-12),39.2(C-13),77.7(C-14),42.4(C-15),84.2(C-16),64.0(C-17),81.2(C-18),58.4(C-19),49.1(C-20),13.4(C-21),58.3(6-OMe),56.5(16-OMe),59.4(18-OMe),170.8(COCH3),21.8(COCH3)。通过查阅文献 [6] ,与其报道的数据一致,确定该化合物为14-O-acetylneoline。

5) benzoylaconitine

白色无定形粉末,易溶于甲醇,与改良碘化铋钾试剂呈现阳性反应;通过1H-NMR与13C-NMR数据推测该化合物分子式为C32H45NO10。化合物10的1H-NMR(500 MHz, Methanol-d4)显示了单取代芳环[δH8.10(2 H, d, J = 7.5Hz), 7.61(1 H, t, J = 7.5Hz), 7.48(2 H, t, J = 7.5 Hz)],四个甲氧基[δH3.33、3.36、3.40和3.71(各3 H,s)]和一个氮乙基[δH1.42(3H, t, J = 7.2Hz)]。δc:81.7(C-1),30.2(C-2),70.7(C-3),44.4(C-4),41.7(C-5),80.7(C-6),51.0(C-7),76.2(C-8),45.4(C-9),44.1(C-10),50.1(C-11),37.3(C-12),78.9(C-13),83.1(C-14),80.7(C-15),94.0(C-16),65.4(C-17),78.2(C-18),51.7(C-19),51.3(C-20),11.2(C-21),55.2(1-OMe),58.2(6-OMe),61.2(16-OMe),59.2(18-OMe),167.6(Ar-CO)131.5(C-1’),129.5(C-2’,6’),131.0(C-3’,5’),134.3(C-4’)。通过查阅文献 [7] ,与其报道的数据一致,确定该化合物为benzoylaconitine。

6) aconitine

白色无定形粉末,易溶于甲醇和氯仿,与改良碘化铋钾试剂呈现阳性反应;通过1H-NMR与13C-NMR数据推测该化合物分子式为C33H47NO10。化合物11的1H-NMR (500 MHz, Chloroform-d)显示了单取代芳环[δH8.01(2 H, d, J = 7.5 Hz)、7.57(1 H, t, J = 7.5 Hz)、7.45(2 H, t, J = 7.5Hz)],单取代乙酰基[δH1.39 3H, s, OCH3; δC172.6; δC21.5],四个甲氧基[δH3.16, 3.26, 3.29和3.74(各 3H,s)]和一个氮乙基[δH1.12(3H, t, J = 7.1 Hz)]。δc:82.2(C-1),33.3(C-2),71.5(C-3),43.2(C-4),46.4(C-5),83.4(C-6),44.8(C-7),92.0(C-8),44.2(C-9),40.9(C-10),50.2(C-11),35.8(C-12),74.2(C-13),79.0(C-14),78.9(C-15),90.1(C-16),61.3(C-17),76.8(C-18),47.5(C-19),49.1(C-20),13.2(C-21),56.0(1-OMe),58.2(6-OMe),61.3(16-OMe),59.2(18-OMe),8-OAc(172.6, 21.5)167.2(Ar-CO)129.8(C-1’),129.7(C-2’,6’),128.8(C-3’,5’),133.5(C-4’)。通过查阅文献 [8] ,与其报道的数据一致,确定该化合物为benzoylaconitine。

7) 3-deoxyaconitine

白色无定形粉末,易溶于甲醇和氯仿,与改良碘化铋钾试剂呈现阳性反应;通过1H-NMR与13C-NMR数据推测该化合物分子式为C34H47NO10。化合物12的1H-NMR(500 MHz, Chloroform-d)显示了单取代芳环[δH8.02(2 H, d, J = 7.5Hz), 7.57(1 H, t, J = 7.5Hz), 7.45(2 H, t, J = 7.5 Hz)],单取代乙酰基[δH1.37 3H, s, OCH3; δC172.6; δC21.5],四个甲氧基[δH3.16、3.27、3.28和3.73(各3 H,s)]和一个氮乙基[δH1.09(3H, t, J = 7.1Hz)]。δc:85.4(C-1),26.5(C-2),35.4(C-3),39.2(C-4),49.2(C-5),83.4(C-6),45.3(C-7),92.3(C-8),44.7(C-9),41.1(C-10),49.4(C-11),36.8(C-12),74.3(C-13),79.0(C-14),79.1(C-15),90.3(C-16),61.5(C-17),80.4(C-18),53.3(C-19),50.1(C-20),13.6(C-21),56.4(1-OMe),58.2(6-OMe),61.2(16-OMe),59.2(18-OMe),8-OAc(172.6, 21.6)166.3(Ar-CO)130.0(C-1’),129.8(C-2’,6’),128.8(C-3’,5’),133.4(C-4’)。通过查阅文献 [8] ,与其报道的数据一致,确定该化合物为3-deoxyaconitine。

8) mesaconitine

白色无定形粉末,易溶于甲醇和氯仿,与改良碘化铋钾试剂呈现阳性反应;通过1H-NMR与13C-NMR数据推测该化合物分子式为C33H45NO11。化合物14的1H-NMR(500 MHz, Chloroform-d)显示了单取代芳环[δH8.03(2 H, d, J = 7.5Hz), 7.57(1 H, t, J = 7.5Hz), 7.45(2 H, t, J = 7.5 Hz)],单取代乙酰基[δH1.38 3H, s, OCH3; δC172.6; δC21.6],四个甲氧基[δH3.16、3.28、3.30和3.74(各3 H,s)]和一个氮甲基[δH2.34(3H, s)]。δc:83.3(C-1),35.9(C-2),71.4(C-3),43.6(C-4),46.8(C-5),82.6(C-6),44.4(C-7),92.0(C-8),43.8(C-9),41.0(C-10),49.6(C-11),34.3(C-12),74.2(C-13),79.0(C-14),79.0(C-15),90.2(C-16),61.2(C-17),76.6(C-18),50.1(C-19),42.6(C-20),56.5(1-OMe),58.1(6-OMe),62.3(16-OMe),59.3(18-OMe),8-OAc(172.6, 21.6),166.3(Ar-CO),129.9(C-1’),129.8(C-2’,6’),129.7(C-3’,5’),133.5(C-4’)。通过查阅文献 [9] [10] ,与其报道的数据一致,确定该化合物为mesaconitine。

9) 10-aconifine

白色无定形粉末,易溶于甲醇和氯仿,与改良碘化铋钾试剂呈现阳性反应;通过1H-NMR与13C-NMR数据推测该化合物分子式为C34H47NO12。化合物15的1H-NMR (500 MHz, Chloroform-d)显示了单取代芳环[δH8.00(2 H, d, J = 7.5 Hz)、7.59(1 H, t, J = 7.5 Hz)、7.46(2 H, t, J = 7.5 Hz)],单取代乙酰基[δH1.44 3H, s, OCH3; δC172.5; δC21.3],四个甲氧基[δH3.20、3.29、3.33和3.76(各3 H,s)]和一个氮乙基[δH1.30(3 H, t, J = 7.1 Hz)]。δc:80.8(C-1),35.3(C-2),70.4(C-3),43.7(C-4),43.2(C-5),82.3(C-6),44.8(C-7),89.8(C-8),55.3(C-9),78.5(C-10),55.9(C-11),44.8(C-12),74.0(C-13),78.5(C-14),78.6(C-15),89.8(C-16),62.3(C-17),76.3(C-18),50.2(C-19),50.3(C-20),11.8(C-21),58.5(1-OMe),59.2(6-OMe),61.6(16-OMe),51.0(18-OMe),8-OAc(172.5, 21.3)166.1(Ar-CO)129.7(C-1’),129.4(C-2’,6’),128.9(C-3’,5’),133.7(C-4’)。通过查阅文献 [10] ,与其报道的数据一致,确定该化合物为10-aconifine。

10) flavaconitine

白色无定形粉末,易溶于甲醇和氯仿,与改良碘化铋钾试剂呈现阳性反应;通过1H-NMR与13C-NMR数据推测该化合物分子式为C31H41NO11。化合物16的1H-NMR (500 MHz, Dimethyl Sulfoxide-d6)显示了单取代芳环[δH7.98(2 H, d, J = 7.5Hz), 7.69(1 H, t, J = 7.5 Hz), 7.58(2 H, t, J = 7.5 Hz)],单取代乙酰基[δH1.35 3H, s, OCH3; δC172.4; δC21.5]和三个甲氧基[δH3.14、3.25和3.59(各3 H,s)]。δc:67.0(C-1),27.4(C-2),29.2(C-3),36.6(C-4),38.6(C-5),81.7(C-6),48.2(C-7),90.5(C-8),51.6(C-9),78.4(C-10),53.1(C-11),47.1(C-12),74.6(C-13),77.9(C-14),77.2(C-15),87.4(C-16),61.4(C-17),79.2(C-18),47.6(C-19),57.0(6-OMe),58.7(16-OMe),58.1(18-OMe),8-OAc(171.4, 20.9),165.1(Ar-CO),129.2(C-1’),129.4(C-2’,6’),128.9(C-3’,5’),133.7(C-4’)。通过查阅文献 [6] ,与其报道的数据一致,确定该化合物为flavaconitine。

2.2. 讨论

本次研究主要从铁棒锤的干燥母根提取分离出10个已知化合物包括三个C20-二萜生物碱Songorine (1)、15-acetylsongorine (2)、12-epi-lucidusculine (3);七个C19-二萜生物碱:14-O-acetylneoline (4)、benzoylaconitine (5)、aconitine (6)、3-deoxyaconitine (7)、mesaconitine (8)、10-aconifine (9)、flavaconitine (10)。实验结果发现铁棒锤中生物碱主要以C19-二萜生物碱为主,C20-二萜生物碱次之。根据相关文献报道C19-二萜生物碱具有一定的抗肿瘤、抗炎、抑菌和杀虫等生物活性 [11] ,所以此次实验对铁棒锤的化学成分研究具有重要意义,为铁棒锤的开发利用提供参考。

3. 提取与分离

将铁棒锤的根(10 kg)研磨成粉末,然后用甲醇提取三次,减压浓缩后得到甲醇提取物1.3 kg。将得到的提取物溶于温水中(50℃),用4% 盐酸调节pH值至2~3,再用二氯萃取三次,减压浓缩得到生物碱粗提物X (131.3 g)。水相用4%氢氧化钠调节pH值至11,再用二氯萃取三次得到生物碱粗提物Y (40.23 g)。

将生物碱粗提取物X用大孔树脂进行除色素和分段,洗脱液为甲醇和水(30%甲醇,50%甲醇,80%甲醇,100%甲醇)进行梯度洗脱,得到5个组分(A~E),将组A (10.3 g)溶于温水中(50℃)用4%氢氧化钠调节pH值至13,用二氯萃取三次得到组分A-1,经过正相柱层析洗脱(二氯:甲醇,100:1~5:1)得到化合物2。组分B (10.5 g)进行正相柱层析洗脱(二氯:甲醇,50:1~2:1)得到化合物1。组分C (23.42 g)进行反相硅胶柱层析,洗脱剂为甲醇和水(0%甲醇-100%)进行梯度洗脱得到组分(C1~C10)。C1 (8.5 g)组分经过正相硅胶柱层析洗脱,用二氯和甲醇(100:1~20:1)洗脱得到(C1-1~C1-6),C1-1 (0.1 g)经过葡聚糖凝胶柱,洗脱剂为二氯:甲醇(1:1)得到化合物3,C1-2 (1.82 g)经过正相硅胶柱层析洗脱(二氯:甲醇,60:1~40:1)得到化合物4,C1-3 (0.81 g)经过正相硅胶柱层析(二氯:甲醇,70:1~15:1)洗脱得到化合物5,C1-4 (1.4 g)经过正相硅胶柱层析(二氯:甲醇,50:1~20:1)洗脱得到化合物6。C3(3.16 g)经过正相硅胶柱层析(二氯:甲醇,80:1~5:1)洗脱得到化合物7。C4 (1.14 g)经过正相硅胶柱层析(二氯:甲醇,80:1~20:1)洗脱有白色晶体析出为化合物8。C5 (2.44 g)经过正相硅胶柱层析(二氯:甲醇,60:1~5:1)洗脱后有白色晶体析出得到其化合物9。C6 (1.71 g)经过正相硅胶柱层析(二氯:甲醇,50:1~5:1)洗脱后有白色晶体析出为化合物10。

4. 结论

从铁棒锤中提取分离出10个二萜生物碱,通过核磁共振波谱数据与文献进行结构鉴定,得出6个C-19二萜生物碱和4个C-20二萜生物碱,分别为Songorine (1)、15-acetylsongorine (2)、12-epi-lucidusculine (3)、14-O-acetylneoline (4)、benzoylaconitine (5)、aconitine (6)、3-deoxyaconitine (7)、mesaconitine (8)、10-aconifine (9)、flavaconitine (10)。

References Lai, M.C., Liu, I.M., Liou, S.S. and Chang, Y.S. (2020) Mesaconitine Plays the Major Role in the Antinociceptive and Anti-Inflammatory Activities of Radix Aconiti Carmichaeli (Chuan Wu). Journal of Food and Drug Analysis, 19, Article 5. >https://doi.org/10.38212/2224-6614.2182. Sinam, Y.M., Kumar, S., Hajare, S., Gautam, S., Chatterjee, S., Variyar, P.S., et al. (2012) Isolation and Identification of Antibacterial Compound from Indo—Himalayan Aconitum nagarum. Asian Pacific Journal of Tropical Disease, 2, S878-S882. >https://doi.org/10.1016/s2222-1808(12)60284-9 Liang, X., Chen, L., Song, L., Fei, W., He, M., He, C., et al. (2017) Diterpenoid Alkaloids from the Root of Aconitum sinchiangense W. T. Wang with Their Antitumor and Antibacterial Activities. Natural Product Research, 31, 2016-2023. >https://doi.org/10.1080/14786419.2016.1272113 Wei, S., Zhang, H., Li, B., Ji, J. and Shao, X. (2019) Insecticidal Effect of Aconitine on the Rice Brown Planthoppers. PLOS ONE, 14, e0221090. >https://doi.org/10.1371/journal.pone.0221090 马莉, 李新亮, 史丹丹, 等. 川乌中1个新的乌头碱类二萜生物碱[J]. 中成药, 2022, 44(9): 2861-2866. Zhang, F., Peng, S., Liao, X., Yu, K. and Ding, L. (2005) Three New Diterpene Alkaloids from the Roots of Aconitum nagarum var. lasiandrum. Planta Medica, 71, 1073-1076. >https://doi.org/10.1055/s-2005-873135 Jiang, B., Lin, S., Zhu, C., Wang, S., Wang, Y., Chen, M., et al. (2012) Correction to Diterpenoid Alkaloids from the Lateral Root of Aconitum carmichaelii. Journal of Natural Products, 75, 1878-1878. >https://doi.org/10.1021/np3006293 Gao, F., Li, Y., Wang, D., Huang, X. and Liu, Q. (2012) Diterpenoid Alkaloids from the Chinese Traditional Herbal “Fuzi” and Their Cytotoxic Activity. Molecules, 17, 5187-5194. >https://doi.org/10.3390/molecules17055187 赵安幸, 彭崇胜, 张晨虹, 等. 黄山乌头中的二萜生物碱(英文) [J]. 中国天然药物, 2007(5): 355-356. 尹田鹏, 罗智慧, 王敏, 等. 黔产乌头的二萜生物碱类成分研究[J]. 中国药房, 2019, 30(22): 3096-3100. Thawabteh, A.M., Thawabteh, A., Lelario, F., Bufo, S.A. and Scrano, L. (2021) Classification, Toxicity and Bioactivity of Natural Diterpenoid Alkaloids. Molecules, 26, Article 4103. >https://doi.org/10.3390/molecules26134103
Baidu
map