2. 天然溴化物的生物学功能及其对生态环境的影响Figure 1. All halogenated natural compounds recorded in the Dictionary of Natural Products (DNP) till January, 2024--图1. 天然产物词典(DNP)目前收录的所有天然卤化物(截止至2024年1月)--
3. 天然溴化物的临床应用潜力Figure 2. The proposed brominase classification based on catalytic mechanisms--图2. 依据催化机理的溴化酶分类--Figure 3. The proposed catalytic mechanisms for three categories of brominases. (A) heme-iron-dependent bromoperoxidase (Heme-Fe BPO); (B) vanadium-dependent bromoperoxidase (V-BPO); (C) flavin-dependent brominase (FDB, indole substrate used as an example)--图3. 三种溴化酶的催化机制示意图。(A) 血红素铁依赖型溴过氧化酶(Heme-Fe BPO);(B) 钒依赖型溴过氧化酶(V-BPO);(C) 黄素依赖型溴化酶(FDB,以吲哚底物为例)--
Figure 4. Substrate-specific catalyzation by V-BPOs. (A) Regioselective bromination of 1,3-di-tert-butylindole by the brown algae Ascophyllum nodosum V-BPO (An-V-BPO). (B) Bromination of (E)-(+)-nerolidol by the red algae Corallina officinalis V-BPO (Co-V-BPO). (C) Bromination of (Z)-prelaureatin by the red algae Laurencia nipponica V-BPO (Ln-V-BPO). (D) Bromolactonization of 4-pentynoic acid by the red algae Delisea pulchra V-BPO from (Dp-V-BPO) to form 5E-bromomethylidenetetrahydro-2-furanone--图4. 溴过氧化酶(V-BPO)参与的底物特异性催化反应。(A) 褐藻Ascophyllum nodosum中V-BPO(An-V-BPO)溴化并氧化1,3-二叔丁基吲哚,合成1,3-二叔丁基吲哚酮。(B) 红藻Corallina officinalis中V-BPO(Co-V-BPO)负责溴化并环化底物(E)-(+)-橙花叔醇。(C) 红藻Laurencia nipponica来源V-BPO(Ln-V-BPO)催化Laureatin生物合成中的溴化与环化反应。(D) 红藻Delisea pulchra来源V-BPO(Dp-V-BPO)催化4-戊炔酸的溴化内酯化反应,形成溴化呋喃酮--
5. 近期报道的FDB5.1. 假交替单胞菌中的溴化酶Bmp2和Bmp5Figure 5. Representative flavin-dependent brominases and their substrates and products. (A) Bromination by Bmp2 and Bmp5 in the postulated biosynthetic scheme of polybrominated diphenyl ethers (PBDEs) in Pseudoalteromonas sp. Bmp2 catalyzes tetrabromination on acyl carrier protein (ACP)-thioesterase (TE)-tethered pyrrole. The C-2 bromine atom is subsequently removed by an obligate debrominase Bmp8 to give 2,3,4-tribrominated pyrrole. Bmp5 catalyzes decarboxylation and dibromination of 4-hydroxybenzoic acid (4-HBA). Brominated pyrroles and phenols are coupled to yield different ether hybrids. (B) In the putative biosynthetic pathway of bromoalterochromide in Pseudoalteromonas sp., AltN catalyzes bromination on the aryl ring of alterochromide. (C) In the biosynthesis of ribosomally synthesized and post-translationally modified peptide (RiPP) in sponge microbiome, SrpI carries out bromination on the C-6 position of the terminal tryptophanyl sidechain of tricyclodehydrated SrpE (Tcd-SrpE). (D) In the biosynthetic pathway of jamaicamide in the cyanobacterium Moorea producens, JamD catalyzes terminal alkyne bromination on jamaicamide B to give jamaicamide A. (E) The Brevundimonas BAL3-derived BrvH is able to brominate indole to form 3-bromoindole. (F) In the biosynthetic pathway of nocardiopsistin in Nocardiopsis sp. HB-J378, NcdP was proposed to brominate nocardiopsistin A to form nocardiopsistin D. (G) In the biosynthetic pathway of 3,5-dibromo-4-anisic acid in Planctomycetales 10988, BaaB was proposed to brominate 4-HBA on the C-3 and C-5 position.. (H) In the proposed aetokthonotoxin biosynthetic pathway in the freshwater cyanobacterium Aetokthonos hydrillicola, AetF catalyzes a two-step bromination on tryptophan at the C-5 and subsequently the C-7, forming 5-bromotryptophan and 5,7-dibromotryptophan. 5-bromotryptophan was converted to 5-bromoindole by a tryptophanase AetE, and then dibrominated by AetA on the C-3 and C-2 to give 2,3,5-tribromoindole. (I) In the putative synthetic pathway of xanthomonadin in Xanthomonas sp., XanB1 was proposed to catalyze bromination on the C-4’ position of the aryl ring while XanJ was proposed to brominate the C-17 of the polyene chain--图5. 代表性黄素依赖型溴化酶及其其催化底物和合成产物。(A) Bmp2和Bmp5参与假交替单胞菌中多溴二苯醚(PBDE)生物合成的溴化反应。Bmp2在底物酰基载体蛋白(ACP)-硫酯(TE)-吡咯上溴化C-2、3、4、5位点。C-2上的溴原子被去溴化酶Bmp8脱去,形成2,3,4-三溴吡咯。Bmp5负责4-羟基苯甲酸(4-HBA)的脱羧和二溴化。溴代酚与溴代吡咯随后相互连接,形成多种醚类混合物。(B) 在假交替单胞菌溴代alterochromide的生物合成途径中,AltN溴化alterochromide的芳香环结构。(C) 在海绵共生菌的核糖体合成-翻译后修饰肽(RiPP)合成途径中,SrpI溴化脱水环化后的SrpE(Tcd-SrpE),溴化位点为C末端色氨酸C-6。(D) 在蓝细菌Moorea producens的jamaicamide合成途径中,JamD可在底物jamaicamide B的末端炔烃基团溴化,形成jamaicamide A。(E) 来源于短波单胞菌BAL3的BrvH能够催化吲哚形成3-溴吡咯。(F) 在诺卡氏菌HB-J378 nocardiopsistin生物合成途径中,NcdP可能溴化底物nocardiopsistin A形成nocardiopsistin D。(G) 在浮霉菌Planctomycetales 10988 3,5-二溴-4-茴香酸合成途径中,BaaB可能作用于底物4-HBA,在C-3和C-5位点溴化。(H) 在淡水蓝细菌Aetokthonos hydrillicola aetokthonotoxin的合成途径中,AetF先后溴化色氨酸的C-5、C-7,形成的5-溴色氨酸和5,7-二溴色氨酸。5-溴色氨酸在色氨酸酶AetE的作用下转化为5-溴吲哚,随后被另一个溴化酶AetA在C-3和C-2位点分别溴化,形成2,3,5-三溴吲哚。(I) 在黄单胞菌菌黄素的生物合成途径中,XanB1负责芳香环C-4’位点的溴化,XanJ负责多烯链C-17位点的溴化--图5. 代表性黄素依赖型溴化酶及其其催化底物和合成产物。(A) Bmp2和Bmp5参与假交替单胞菌中多溴二苯醚(PBDE)生物合成的溴化反应。Bmp2在底物酰基载体蛋白(ACP)-硫酯(TE)-吡咯上溴化C-2、3、4、5位点。C-2上的溴原子被去溴化酶Bmp8脱去,形成2,3,4-三溴吡咯。Bmp5负责4-羟基苯甲酸(4-HBA)的脱羧和二溴化。溴代酚与溴代吡咯随后相互连接,形成多种醚类混合物。(B) 在假交替单胞菌溴代alterochromide的生物合成途径中,AltN溴化alterochromide的芳香环结构。(C) 在海绵共生菌的核糖体合成-翻译后修饰肽(RiPP)合成途径中,SrpI溴化脱水环化后的SrpE(Tcd-SrpE),溴化位点为C末端色氨酸C-6。(D) 在蓝细菌Moorea producens的jamaicamide合成途径中,JamD可在底物jamaicamide B的末端炔烃基团溴化,形成jamaicamide A。(E) 来源于短波单胞菌BAL3的BrvH能够催化吲哚形成3-溴吡咯。(F) 在诺卡氏菌HB-J378 nocardiopsistin生物合成途径中,NcdP可能溴化底物nocardiopsistin A形成nocardiopsistin D。(G) 在浮霉菌Planctomycetales 10988 3,5-二溴-4-茴香酸合成途径中,BaaB可能作用于底物4-HBA,在C-3和C-5位点溴化。(H) 在淡水蓝细菌Aetokthonos hydrillicola aetokthonotoxin的合成途径中,AetF先后溴化色氨酸的C-5、C-7,形成的5-溴色氨酸和5,7-二溴色氨酸。5-溴色氨酸在色氨酸酶AetE的作用下转化为5-溴吲哚,随后被另一个溴化酶AetA在C-3和C-2位点分别溴化,形成2,3,5-三溴吲哚。(I) 在黄单胞菌菌黄素的生物合成途径中,XanB1负责芳香环C-4’位点的溴化,XanJ负责多烯链C-17位点的溴化Figure 5. Representative flavin-dependent brominases and their substrates and products. (A) Bromination by Bmp2 and Bmp5 in the postulated biosynthetic scheme of polybrominated diphenyl ethers (PBDEs) in Pseudoalteromonas sp. Bmp2 catalyzes tetrabromination on acyl carrier protein (ACP)-thioesterase (TE)-tethered pyrrole. The C-2 bromine atom is subsequently removed by an obligate debrominase Bmp8 to give 2,3,4-tribrominated pyrrole. Bmp5 catalyzes decarboxylation and dibromination of 4-hydroxybenzoic acid (4-HBA). Brominated pyrroles and phenols are coupled to yield different ether hybrids. (B) In the putative biosynthetic pathway of bromoalterochromide in Pseudoalteromonas sp., AltN catalyzes bromination on the aryl ring of alterochromide. (C) In the biosynthesis of ribosomally synthesized and post-translationally modified peptide (RiPP) in sponge microbiome, SrpI carries out bromination on the C-6 position of the terminal tryptophanyl sidechain of tricyclodehydrated SrpE (Tcd-SrpE). (D) In the biosynthetic pathway of jamaicamide in the cyanobacterium Moorea producens, JamD catalyzes terminal alkyne bromination on jamaicamide B to give jamaicamide A. (E) The Brevundimonas BAL3-derived BrvH is able to brominate indole to form 3-bromoindole. (F) In the biosynthetic pathway of nocardiopsistin in Nocardiopsis sp. HB-J378, NcdP was proposed to brominate nocardiopsistin A to form nocardiopsistin D. (G) In the biosynthetic pathway of 3,5-dibromo-4-anisic acid in Planctomycetales 10988, BaaB was proposed to brominate 4-HBA on the C-3 and C-5 position.. (H) In the proposed aetokthonotoxin biosynthetic pathway in the freshwater cyanobacterium Aetokthonos hydrillicola, AetF catalyzes a two-step bromination on tryptophan at the C-5 and subsequently the C-7, forming 5-bromotryptophan and 5,7-dibromotryptophan. 5-bromotryptophan was converted to 5-bromoindole by a tryptophanase AetE, and then dibrominated by AetA on the C-3 and C-2 to give 2,3,5-tribromoindole. (I) In the putative synthetic pathway of xanthomonadin in Xanthomonas sp., XanB1 was proposed to catalyze bromination on the C-4’ position of the aryl ring while XanJ was proposed to brominate the C-17 of the polyene chain--图5. 代表性黄素依赖型溴化酶及其其催化底物和合成产物。(A) Bmp2和Bmp5参与假交替单胞菌中多溴二苯醚(PBDE)生物合成的溴化反应。Bmp2在底物酰基载体蛋白(ACP)-硫酯(TE)-吡咯上溴化C-2、3、4、5位点。C-2上的溴原子被去溴化酶Bmp8脱去,形成2,3,4-三溴吡咯。Bmp5负责4-羟基苯甲酸(4-HBA)的脱羧和二溴化。溴代酚与溴代吡咯随后相互连接,形成多种醚类混合物。(B) 在假交替单胞菌溴代alterochromide的生物合成途径中,AltN溴化alterochromide的芳香环结构。(C) 在海绵共生菌的核糖体合成-翻译后修饰肽(RiPP)合成途径中,SrpI溴化脱水环化后的SrpE(Tcd-SrpE),溴化位点为C末端色氨酸C-6。(D) 在蓝细菌Moorea producens的jamaicamide合成途径中,JamD可在底物jamaicamide B的末端炔烃基团溴化,形成jamaicamide A。(E) 来源于短波单胞菌BAL3的BrvH能够催化吲哚形成3-溴吡咯。(F) 在诺卡氏菌HB-J378 nocardiopsistin生物合成途径中,NcdP可能溴化底物nocardiopsistin A形成nocardiopsistin D。(G) 在浮霉菌Planctomycetales 10988 3,5-二溴-4-茴香酸合成途径中,BaaB可能作用于底物4-HBA,在C-3和C-5位点溴化。(H) 在淡水蓝细菌Aetokthonos hydrillicola aetokthonotoxin的合成途径中,AetF先后溴化色氨酸的C-5、C-7,形成的5-溴色氨酸和5,7-二溴色氨酸。5-溴色氨酸在色氨酸酶AetE的作用下转化为5-溴吲哚,随后被另一个溴化酶AetA在C-3和C-2位点分别溴化,形成2,3,5-三溴吲哚。(I) 在黄单胞菌菌黄素的生物合成途径中,XanB1负责芳香环C-4’位点的溴化,XanJ负责多烯链C-17位点的溴化--图5. 代表性黄素依赖型溴化酶及其其催化底物和合成产物。(A) Bmp2和Bmp5参与假交替单胞菌中多溴二苯醚(PBDE)生物合成的溴化反应。Bmp2在底物酰基载体蛋白(ACP)-硫酯(TE)-吡咯上溴化C-2、3、4、5位点。C-2上的溴原子被去溴化酶Bmp8脱去,形成2,3,4-三溴吡咯。Bmp5负责4-羟基苯甲酸(4-HBA)的脱羧和二溴化。溴代酚与溴代吡咯随后相互连接,形成多种醚类混合物。(B) 在假交替单胞菌溴代alterochromide的生物合成途径中,AltN溴化alterochromide的芳香环结构。(C) 在海绵共生菌的核糖体合成-翻译后修饰肽(RiPP)合成途径中,SrpI溴化脱水环化后的SrpE(Tcd-SrpE),溴化位点为C末端色氨酸C-6。(D) 在蓝细菌Moorea producens的jamaicamide合成途径中,JamD可在底物jamaicamide B的末端炔烃基团溴化,形成jamaicamide A。(E) 来源于短波单胞菌BAL3的BrvH能够催化吲哚形成3-溴吡咯。(F) 在诺卡氏菌HB-J378 nocardiopsistin生物合成途径中,NcdP可能溴化底物nocardiopsistin A形成nocardiopsistin D。(G) 在浮霉菌Planctomycetales 10988 3,5-二溴-4-茴香酸合成途径中,BaaB可能作用于底物4-HBA,在C-3和C-5位点溴化。(H) 在淡水蓝细菌Aetokthonos hydrillicola aetokthonotoxin的合成途径中,AetF先后溴化色氨酸的C-5、C-7,形成的5-溴色氨酸和5,7-二溴色氨酸。5-溴色氨酸在色氨酸酶AetE的作用下转化为5-溴吲哚,随后被另一个溴化酶AetA在C-3和C-2位点分别溴化,形成2,3,5-三溴吲哚。(I) 在黄单胞菌菌黄素的生物合成途径中,XanB1负责芳香环C-4’位点的溴化,XanJ负责多烯链C-17位点的溴化
References
Gribble, G.W. (2015) Biological Activity of Recently Discovered Halogenated Marine Natural Products. Marine Drugs, 13, 4044-4136. >https://doi.org/10.3390/md13074044
Gribble, G.W. (2023) Naturally Occurring Organohalogen Compounds—A Comprehensive Review. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, J.K. and Dirsch, V.M., Eds., Naturally Occurring Organohalogen Compounds. Progress in the Chemistry of Organic Natural Products, Vol. 121, Springer, 1-546.
Carvalho, M.F. and Oliveira, R.S. (2017) Natural Production of Fluorinated Compounds and Biotechnological Prospects of the Fluorinase Enzyme. Critical Reviews in Biotechnology, 37, 880-897. >https://doi.org/10.1080/07388551.2016.1267109
Fournier, J.-B., Rebuffet, E., Delage, L., Grijol, R., Meslet-Cladière, L., Rzonca, J., et al. (2014) The Vanadium Iodoperoxidase from the Marine Flavobacteriaceae Species Zobellia galactanivorans Reveals Novel Molecular and Evolutionary Features of Halide Specificity in the Vanadium Haloperoxidase Enzyme Family. Applied and Environmental Microbiology, 80, 7561-7573. >https://doi.org/10.1128/AEM.02430-14
Büchler, J., Papadopoulou, A. and Buller, R. (2019) Recent Advances in Flavin-Dependent Halogenase Biocatalysis: Sourcing, Engineering, and Application. Catalysts, 9, Article 1030. >https://doi.org/10.3390/catal9121030
Fisher, B.F., Snodgrass, H.M., Jones, K.A., Andorfer, M.C. and Lewis, J.C. (2019) Site-Selective C-H Halogenation Using Flavin-Dependent Halogenases Identified via Family-Wide Activity Profiling. ACS Central Science, 5, 1844-1856. >https://doi.org/10.1021/acscentsci.9b00835
Gan, J., Yates, S.R., Ohr, H.D. and Sims, J.J. (1998) Production of Methyl Bromide by Terrestrial Higher Plants. Geophysical Research Letters, 25, 3595-3598. >https://doi.org/10.1029/98gl52697
Leri, A.C. and Myneni, S.C.B. (2012) Natural Organobromine in Terrestrial Ecosystems. Geochimica et Cosmochimica Acta, 77, 1-10. >https://doi.org/10.1016/j.gca.2011.11.012
Starr, M.P. and Stephens, W.L. (1964) Pigmentation and Taxonomy of the Genus Xanthomonas. Journal of Bacteriology, 87, 293-302. >https://doi.org/10.1128/jb.87.2.293-302.1964
He, Y.-W., Cao, X.-Q. and Poplawsky, A.R. (2020) Chemical Structure, Biological Roles, Biosynthesis and Regulation of the Yellow Xanthomonadin Pigments in the Phytopathogenic Genus Xanthomonas. Molecular Plant-Microbe Interactions, 33, 705-714. >https://doi.org/10.1094/mpmi-11-19-0326-cr
Beekman, A.M., Wossa, S.W., Kevo, O., Ma, P. and Barrow, R.A. (2015) Discovery and Synthesis of Boletopsins 13 and 14, Brominated Fungal Metabolites of Terrestrial Origin. Journal of Natural Products, 78, 2133-2135. >https://doi.org/10.1021/acs.jnatprod.5b00202
Niemann, H., Marmann, A., Lin, W. and Proksch, P. (2015) Sponge Derived Bromotyrosines: Structural Diversity through Natural Combinatorial Chemistry. Natural Product Communications, 10, 219-231. >https://doi.org/10.1177/1934578x1501000143
Thoms, C., Ebel, R. and Proksch, P. (2006) Activated Chemical Defense in Aplysina Sponges Revisited. Journal of Chemical Ecology, 32, 97-123. >https://doi.org/10.1007/s10886-006-9355-x
Horna-Gray, I., Lopez, N.A., Ahn, Y., Saks, B., Girer, N., Hentschel, U., et al. (2022) Desulfoluna spp. Form a Cosmopolitan Group of Anaerobic Dehalogenating Bacteria Widely Distributed in Marine Sponges. FEMS Microbiology Ecology, 98, Article fiac063. >https://doi.org/10.1093/femsec/fiac063
Paul, N., de Nys, R. and Steinberg, P. (2006) Chemical Defence against Bacteria in the Red Alga Asparagopsis armata: Linking Structure with Function. Marine Ecology Progress Series, 306, 87-101. >https://doi.org/10.3354/meps306087
Thapa, H.R., Lin, Z., Yi, D., Smith, J.E., Schmidt, E.W. and Agarwal, V. (2020) Genetic and Biochemical Reconstitution of Bromoform Biosynthesis in Asparagopsis Lends Insights into Seaweed Reactive Oxygen Species Enzymology. ACS Chemical Biology, 15, 1662-1670. >https://doi.org/10.1021/acschembio.0c00299
Gribble, G.W. (2000) The Natural Production of Organobromine Compounds. Environmental Science and Pollution Research, 7, 37-49. >https://doi.org/10.1065/espr199910.002
Mitra, S.N., Slungaard, A. and Hazen, S.L. (2000) Role of Eosinophil Peroxidase in the Origins of Protein Oxidation in Asthma. Redox Report, 5, 215-224. >https://doi.org/10.1179/135100000101535771
Wu, W., Samoszuk, M.K., Comhair, S.A.A., Thomassen, M.J., Farver, C.F., Dweik, R.A., et al. (2000) Eosinophils Generate Brominating Oxidants in Allergen-Induced Asthma. Journal of Clinical Investigation, 105, 1455-1463. >https://doi.org/10.1172/jci9702
Park, H.B., Lam, Y.C., Gaffney, J.P., Weaver, J.C., Krivoshik, S.R., Hamchand, R., et al. (2019) Bright Green Biofluorescence in Sharks Derives from Bromo-Kynurenine Metabolism. iScience, 19, 1291-1336. >https://doi.org/10.1016/j.isci.2019.07.019
McCall, A.S., Cummings, C.F., Bhave, G., Vanacore, R., Page-McCaw, A. and Hudson, B.G. (2014) Bromine Is an Essential Trace Element for Assembly of Collagen IV Scaffolds in Tissue Development and Architecture. Cell, 157, 1380-1392. >https://doi.org/10.1016/j.cell.2014.05.009
Yanagisawa, I. and Yoshikawa, H. (1973) A Bromine Compound Isolated from Human Cerebrospinal Fluid. Biochimica et Biophysica Acta (BBA)-General Subjects, 329, 283-294. >https://doi.org/10.1016/0304-4165(73)90293-6
Pospíšil, P. (2016) Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. Frontiers in Plant Science, 7, Article 1950. >https://doi.org/10.3389/fpls.2016.01950
Thapa, H.R. and Agarwal, V. (2021) Obligate Brominating Enzymes Underlie Bromoform Production by Marine Cyanobacteria. Journal of Phycology, 57, 1131-1139. >https://doi.org/10.1111/jpy.13142
Salawitch, R.J. (2006) Biogenic Bromine. Nature, 439, 275-277. >https://doi.org/10.1038/439275a
Breinlinger, S., Phillips, T.J., Haram, B.N., Mareš, J., Martínez Yerena, J.A., Hrouzek, P., et al. (2021) Hunting the Eagle Killer: A Cyanobacterial Neurotoxin Causes Vacuolar Myelinopathy. Science, 371, eaax9050. >https://doi.org/10.1126/science.aax9050
Agarwal, V., El Gamal, A.A., Yamanaka, K., Poth, D., Kersten, R.D., Schorn, M., et al. (2014) Biosynthesis of Polybrominated Aromatic Organic Compounds by Marine Bacteria. Nature Chemical Biology, 10, 640-647. >https://doi.org/10.1038/nchembio.1564
Teuten, E.L., Xu, L. and Reddy, C.M. (2005) Two Abundant Bioaccumulated Halogenated Compounds Are Natural Products. Science, 307, 917-920. >https://doi.org/10.1126/science.1106882
Alonso, M.B., Maruya, K.A., Dodder, N.G., Lailson-Brito, J., Azevedo, A., Santos-Neto, E., et al. (2017) Nontargeted Screening of Halogenated Organic Compounds in Bottlenose Dolphins (Tursiops truncatus) from Rio de Janeiro, Brazil. Environmental Science&Technology, 51, 1176-1185. >https://doi.org/10.1021/acs.est.6b04186
Losada, S., Roach, A., Roosens, L., Santos, F.J., Galceran, M.T., Vetter, W., et al. (2009) Biomagnification of Anthropogenic and Naturally-Produced Organobrominated Compounds in a Marine Food Web from Sydney Harbour, Australia. Environment International, 35, 1142-1149. >https://doi.org/10.1016/j.envint.2009.07.008
Zhao, T., Tang, X., Li, D., Zhao, J., Zhou, R., Shu, F., et al. (2022) Prenatal Exposure to Environmentally Relevant Levels of PBDE-99 Leads to Testicular Dysgenesis with Steroidogenesis Disorders. Journal of Hazardous Materials, 424, Article 127547. >https://doi.org/10.1016/j.jhazmat.2021.127547
Wu, Z., Han, W., Yang, X., Li, Y. and Wang, Y. (2019) The Occurrence of Polybrominated Diphenyl Ether (PBDE) Contamination in Soil, Water/Sediment, and Air. Environmental Science and Pollution Research, 26, 23219-23241. >https://doi.org/10.1007/s11356-019-05768-w
McDonald, T.A. (2005) Polybrominated Diphenylether Levels among United States Residents: Daily Intake and Risk of Harm to the Developing Brain and Reproductive Organs. Integrated Environmental Assessment and Management, 1, 343-354. >https://doi.org/10.1002/ieam.5630010404
Chokwe, T.B., Magubane, M.N., Abafe, O.A., Okonkwo, J.O. and Sibiya, I.V. (2019) Levels, Distributions, and Ecological Risk Assessments of Polybrominated Diphenyl Ethers and Alternative Flame Retardants in River Sediments from Vaal River, South Africa. Environmental Science and Pollution Research, 26, 7156-7163. >https://doi.org/10.1007/s11356-018-04063-4
Kim, K., Hyun, Y., Hewage, S.R., Piao, M., Kang, K., Kang, H., et al. (2017) 3-Bromo-4,5-Dihydroxybenzaldehyde Enhances the Level of Reduced Glutathione via the Nrf2-Mediated Pathway in Human Keratinocytes. Marine Drugs, 15, Article 291. >https://doi.org/10.3390/md15090291
Qin, S.-G., Tian, H.-Y., Wei, J., Han, Z.-H., Zhang, M.-J., et al. (2018) 3-Bromo-4,5-Dihydroxybenzaldehyde Protects against Myocardial Ischemia and Reperfusion Injury through the Akt-PGC1α-Sirt3 Pathway. Frontiers in Pharmacology, 9, Article 722. >https://doi.org/10.3389/fphar.2018.00722
Kang, N., Han, S., Kang, H., Ko, G., et al. (2017) Anti-Inflammatory Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde, a Component of Polysiphonia morrowii, in vivo and in vitro. Toxicological Research, 33, 325-332. >https://doi.org/10.5487/tr.2017.33.4.325
Wang, Q., Ou, K., Zeng, C. and Fang, Y. (2022) 5-Bromo-3,4-Dihydroxybenzaldehyde Attenuates Endothelial Cells Injury from High Glucose-Induced Damage. Biomedicine&Pharmacotherapy, 155, Article 113793. >https://doi.org/10.1016/j.biopha.2022.113793
Kang, J.-I, Choi, Y.K., Han, S.-C., Nam, H., Lee, G., Kang, J.-H., et al. (2022) 5-Bromo-3,4-Dihydroxybenzaldehyde Promotes Hair Growth through Activation of Wnt/β-catenin and Autophagy Pathways and Inhibition of TGF-β Pathways in Dermal Papilla Cells. Molecules, 27, Article 2176. >https://doi.org/10.3390/molecules27072176
Liu, M., Hansen, P.E. and Lin, X. (2011) Bromophenols in Marine Algae and Their Bioactivities. Marine Drugs, 9, 1273-1292. >https://doi.org/10.3390/md9071273
Arai, M., Shin, D., Kamiya, K., Ishida, R., Setiawan, A., Kotoku, N., et al. (2016) Marine Spongean Polybrominated Diphenyl Ethers, Selective Growth Inhibitors against the Cancer Cells Adapted to Glucose Starvation, Inhibits Mitochondrial Complex II. Journal of Natural Medicines, 71, 44-49. >https://doi.org/10.1007/s11418-016-1025-x
Hofer, S., Hartmann, A., Orfanoudaki, M., Nguyen Ngoc, H., Nagl, M., Karsten, U., et al. (2019) Development and Validation of an HPLC Method for the Quantitative Analysis of Bromophenolic Compounds in the Red Alga Vertebrata lanosa. Marine Drugs, 17, Article 675. >https://doi.org/10.3390/md17120675
Dong, H., Liu, M., Wang, L., Liu, Y., et al. (2021) Bromophenol Bis (2,3,6-Tribromo-4,5-Dihydroxybenzyl) Ether Protects HaCaT Skin Cells from Oxidative Damage via Nrf2-Mediated Pathways. Antioxidants, 10, Article 1436. >https://doi.org/10.3390/antiox10091436
Sun, J., Wu, J., An, B., de Voogd, N.J., Cheng, W. and Lin, W. (2018) Bromopyrrole Alkaloids with the Inhibitory Effects against the Biofilm Formation of Gram Negative Bacteria. Marine Drugs, 16, Article 9. >https://doi.org/10.3390/md16010009
Kovalerchik, D., Singh, R.P., Schlesinger, P., Mahajni, A., Shefer, S., Fridman, M., et al. (2020) Bromopyrrole Alkaloids of the Sponge Agelas oroides Collected Near the Israeli Mediterranean Coastline. Journal of Natural Products, 83, 374-384. >https://doi.org/10.1021/acs.jnatprod.9b00863
Mahamed, S., Motal, R., Govender, T., Dlamini, N., Khuboni, K., Hadeb, Z., et al. (2023) A Concise Review on Marine Bromopyrrole Alkaloids as Anticancer Agents. Bioorganic&Medicinal Chemistry Letters, 80, Article 129102. >https://doi.org/10.1016/j.bmcl.2022.129102
Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G. and Prinsep, M.R. (2016) Marine Natural Products. Natural Product Reports, 33, 382-431. >https://doi.org/10.1039/c5np00156k
Nakamura, Y., Kobayashi, J., Gilmore, J., Mascal, M., Rinehart, K.L., Nakamura, H., et al. (1986) Bromo-Eudistomin D, a Novel Inducer of Calcium Release from Fragmented Sarcoplasmic Reticulum that Causes Contractions of Skinned Muscle Fibers. Journal of Biological Chemistry, 261, 4139-4142. >https://doi.org/10.1016/s0021-9258(17)35636-3
Murcia, C., Coello, L., Fernández, R., Martín, M., Reyes, F., Francesch, A., et al. (2014) Tanjungides A and B: New Antitumoral Bromoindole Derived Compounds from Diazona cf formosa. Isolation and Total Synthesis. Marine Drugs, 12, 1116-1130. >https://doi.org/10.3390/md12021116
Ota, Y., Chinen, T., Yoshida, K., Kudo, S., Nagumo, Y., Shiwa, Y., et al. (2016) Eudistomin C, an Antitumor and Antiviral Natural Product, Targets 40s Ribosome and Inhibits Protein Translation. ChemBioChem, 17, 1616-1620. >https://doi.org/10.1002/cbic.201600075
Xiao, L. (2022) A Review: Meridianins and Meridianins Derivatives. Molecules, 27, Article 8714. >https://doi.org/10.3390/molecules27248714
Barros-Nepomuceno, F.W.A., et al. (2021) The Effects of the Alkaloid Tambjamine J on Mice Implanted with Sarcoma 180 Tumor Cells. ChemMedChem, 16, 420-428. >https://doi.org/10.1002/cmdc.202000387
Bucher, C., Deans, R.M. and Burns, N.Z. (2015) Highly Selective Synthesis of Halomon, Plocamenone, and Isoplocamenone. Journal of the American Chemical Society, 137, 12784-12787. >https://doi.org/10.1021/jacs.5b08398
Carter-Franklin, J.N. and Butler, A. (2004) Vanadium bromoperoxidase-Catalyzed Biosynthesis of Halogenated Marine Natural Products. Journal of the American Chemical Society, 126, 15060-15066. >https://doi.org/10.1021/ja047925p
Crowe, C., et al. (2021) Halogenases: A Palette of Emerging Opportunities for Synthetic Biology-Synthetic Chemistry and C-H Functionalisation. Chemical Society Reviews, 50, 9443-9481. >https://doi.org/10.1039/D0CS01551B
郑哲麟, 胡文达, 何亚文. 微生物卤化酶及其应用研究进展[J]. 微生物前沿, 2022, 9(4): 141-155.
Butler, A. and Sandy, M. (2009) Mechanistic Considerations of Halogenating Enzymes. Nature, 460, 848-854. >https://doi.org/10.1038/nature08303
Shaw, P.D. and Hager, L.P. (1959) Biological Chlorination. IV. Peroxidative Nature of Enzymatic Chlorination. Journal of the American Chemical Society, 81, 6527-6528. >https://doi.org/10.1021/ja01533a056
Dunford, H.B., Lambeir, A., Kashem, M.A. and Pickard, M. (1987) On the Mechanism of Chlorination by Chloroperoxidase. Archives of Biochemistry and Biophysics, 252, 292-302. >https://doi.org/10.1016/0003-9861(87)90034-8
Hofrichter, M. and Ullrich, R. (2006) Heme-Thiolate Haloperoxidases: Versatile Biocatalysts with Biotechnological and Environmental Significance. Applied Microbiology and Biotechnology, 71, 276-288. >https://doi.org/10.1007/s00253-006-0417-3
Ullrich, R., Nüske, J., Scheibner, K., Spantzel, J. and Hofrichter, M. (2004) Novel Haloperoxidase from the Agaric Basidiomycete Agrocybe aegerita Oxidizes Aryl Alcohols and Aldehydes. Applied and Environmental Microbiology, 70, 4575-4581. >https://doi.org/10.1128/aem.70.8.4575-4581.2004
Anh, D.H., Ullrich, R., Benndorf, D., Svatoś, A., Muck, A. and Hofrichter, M. (2007) The Coprophilous Mushroom Coprinus radians Secretes a Haloperoxidase that Catalyzes Aromatic Peroxygenation. Applied and Environmental Microbiology, 73, 5477-5485. >https://doi.org/10.1128/aem.00026-07
Auer, M., Gruber, C., Bellei, M., Pirker, K.F., Zamocky, M., Kroiss, D., et al. (2013) A Stable Bacterial Peroxidase with Novel Halogenating Activity and an Autocatalytically Linked Heme Prosthetic Group. Journal of Biological Chemistry, 288, 27181-27199. >https://doi.org/10.1074/jbc.m113.477067
Arnhold, J. and Malle, E. (2022) Halogenation Activity of Mammalian Heme Peroxidases. Antioxidants, 11, Article 890. >https://doi.org/10.3390/antiox11050890
Marcinkiewicz, J. and Kontny, E. (2012) Taurine and Inflammatory Diseases. Amino Acids, 46, 7-20. >https://doi.org/10.1007/s00726-012-1361-4
Davies, M.J. and Hawkins, C.L. (2020) The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease. Antioxidants&Redox Signaling, 32, 957-981. >https://doi.org/10.1089/ars.2020.8030
Wedes, S.H., Wu, W., Comhair, S.A.A., McDowell, K.M., DiDonato, J.A., Erzurum, S.C., et al. (2011) Urinary Bromotyrosine Measures Asthma Control and Predicts Asthma Exacerbations in Children. The Journal of Pediatrics, 159, 248-255. >https://doi.org/10.1016/j.jpeds.2011.01.029
Asahi, T., Kondo, H., Masuda, M., Nishino, H., Aratani, Y., Naito, Y., et al. (2010) Chemical and Immunochemical Detection of 8-Halogenated Deoxyguanosines at Early Stage Inflammation. Journal of Biological Chemistry, 285, 9282-9291. >https://doi.org/10.1074/jbc.m109.054213
Péterfi, Z. and Geiszt, M. (2014) Peroxidasins: Novel Players in Tissue Genesis. Trends in Biochemical Sciences, 39, 305-307. >https://doi.org/10.1016/j.tibs.2014.05.005
Bathish, B., Paumann-Page, M., Paton, L.N., Kettle, A.J. and Winterbourn, C.C. (2020) Peroxidasin Mediates Bromination of Tyrosine Residues in the Extracellular Matrix. Journal of Biological Chemistry, 295, 12697-12705. >https://doi.org/10.1074/jbc.ra120.014504
Butler, A. and Carter-Franklin, J.N. (2004) The Role of Vanadium Bromoperoxidase in the Biosynthesis of Halogenated Marine Natural Products. Natural Product Reports, 21, 180-188. >https://doi.org/10.1039/b302337k
Vilter, H. (1984) Peroxidases from Phaeophyceae: A Vanadium(V)-Dependent Peroxidase from Ascophyllum nodosum. Phytochemistry, 23, 1387-1390. >https://doi.org/10.1016/s0031-9422(00)80471-9
Johnson, T.L., Palenik, B. and Brahamsha, B. (2011) Characterization of a Functional Vanadium-Dependent Bromoperoxidase in the Marine Cyanobacterium Synechococcus sp. CC93111. Journal of Phycology, 47, 792-801. >https://doi.org/10.1111/j.1529-8817.2011.01007.x
Zhang, B., Cao, X., Cheng, X., Wu, P., Xiao, T. and Zhang, W. (2010) Efficient Purification with High Recovery of Vanadium Bromoperoxidase from Corallina officinalis. Biotechnology Letters, 33, 545-548. >https://doi.org/10.1007/s10529-010-0454-y
Renirie, R., Pierlot, C., Aubry, J., Hartog, A.F., Schoemaker, H.E., Alsters, P.L., et al. (2003) Vanadium Chloroperoxidase as a Catalyst for Hydrogen Peroxide Disproportionation to Singlet Oxygen in Mildly Acidic Aqueous Environment. Advanced Synthesis&Catalysis, 345, 849-858. >https://doi.org/10.1002/adsc.200303008
McLauchlan, C.C., Murakami, H.A., Wallace, C.A. and Crans, D.C. (2018) Coordination Environment Changes of the Vanadium in Vanadium-Dependent Haloperoxidase Enzymes. Journal of Inorganic Biochemistry, 186, 267-279. >https://doi.org/10.1016/j.jinorgbio.2018.06.011
Martínez, V.M., Cremer, G.D., Roeffaers, M.B.J., Sliwa, M., Baruah, M., De Vos, D.E., et al. (2008) Exploration of Single Molecule Events in a Haloperoxidase and Its Biomimic: Localization of Halogenation Activity. Journal of the American Chemical Society, 130, 13192-13193. >https://doi.org/10.1021/ja804606m
Agarwal, V., Miles, Z.D., Winter, J.M., Eustáquio, A.S., El Gamal, A.A. and Moore, B.S. (2017) Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chemical Reviews, 117, 5619-5674. >https://doi.org/10.1021/acs.chemrev.6b00571
Tschirret-Guth, R.A. and Butler, A. (1994) Evidence for Organic Substrate Binding to Vanadium Bromoperoxidase. Journal of the American Chemical Society, 116, 411-412. >https://doi.org/10.1021/ja00080a063
Martinez, J.S., Carroll, G.L., Tschirret-Guth, R.A., Altenhoff, G., Little, R.D. and Butler, A. (2001) On the Regiospecificity of Vanadium Bromoperoxidase. Journal of the American Chemical Society, 123, 3289-3294. >https://doi.org/10.1021/ja004176c
Kaneko, K., Washio, K., Umezawa, T., Matsuda, F., Morikawa, M. and Okino, T. (2014) Cdna Cloning and Characterization of Vanadium-Dependent Bromoperoxidases from the Red Alga Laurencia nipponica. Bioscience, Biotechnology, and Biochemistry, 78, 1310-1319. >https://doi.org/10.1080/09168451.2014.918482
Andersson, M.A. and Allenmark, S.G. (1998) Asymmetric Sulfoxidation Catalyzed by a Vanadium Bromoperoxidase: Substrate Requirements of the Catalyst. Tetrahedron, 54, 15293-15304. >https://doi.org/10.1016/s0040-4020(98)00956-9
Coughlin, P., Roberts, S., Rush, C. and Willetts, A. (1993) Biotransformation of Alkenes by Haloperoxidases: Regiospecific Bromohydrin Formation from Cinnamyl Substrates. Biotechnology Letters, 15, 907-912. >https://doi.org/10.1007/bf00131755
Camilli, A. and Bassler, B.L. (2006) Bacterial Small-Molecule Signaling Pathways. Science, 311, 1113-1116. >https://doi.org/10.1126/science.1121357
Michels, J.J., Allain, E.J., Borchardt, S.A., Hu, P. and McCoy, W.F. (2000) Degradation Pathway of Homoserine Lactone Bacterial Signal Molecules by Halogen Antimicrobials Identified by Liquid Chromatography with Photodiode Array and Mass Spectrometric Detection. Journal of Chromatography A, 898, 153-165. >https://doi.org/10.1016/s0021-9673(00)00849-9
Keltsch, N.G., Pütz, E., Dietrich, C., Wick, A., Tremel, W. and Ternes, T.A. (2023) Bromination of Quorum Sensing Molecules: Vanadium Bromoperoxidase and Cerium Dioxide Nanocrystals via Free Active Bromine Transform Bacterial Communication. Environmental Science&Technology, 57, 18491-18498. >https://doi.org/10.1021/acs.est.3c00459
Syrpas, M., Ruysbergh, E., Blommaert, L., Vanelslander, B., Sabbe, K., Vyverman, W., et al. (2014) Haloperoxidase Mediated Quorum Quenching by Nitzschia cf Pellucida: Study of the Metabolization of N-Acyl Homoserine Lactones by a Benthic Diatom. Marine Drugs, 12, 352-367. >https://doi.org/10.3390/md12010352
Sandy, M., Carter-Franklin, J.N., Martin, J.D. and Butler, A. (2011) Vanadium Bromoperoxidase from Delisea pulchra: Enzyme-Catalyzed Formation of Bromofuranone and Attendant Disruption of Quorum Sensing. Chemical Communications, 47, 12086-12088. >https://doi.org/10.1039/c1cc15605e
Cosse, A., Potin, P. and Leblanc, C. (2009) Patterns of Gene Expression Induced by Oligoguluronates Reveal Conserved and Environment-Specific Molecular Defense Responses in the Brown Alga Laminaria digitata. New Phytologist, 182, 239-250. >https://doi.org/10.1111/j.1469-8137.2008.02745.x
Almeida, M., Filipe, S., Humanes, M., Maia, M.F., Melo, R., Severino, N., et al. (2001) Vanadium Haloperoxidases from Brown Algae of the Laminariaceae Family. Phytochemistry, 57, 633-642. >https://doi.org/10.1016/s0031-9422(01)00094-2
Johnson, T.L., Brahamsha, B., Palenik, B. and Mühle, J. (2015) Halomethane Production by Vanadium-Dependent Bromoperoxidase in Marine Synechococcus. Limnology and Oceanography, 60, 1823-1835. >https://doi.org/10.1002/lno.10135
Lin, C.Y. and Manley, S.L. (2012) Bromoform Production from Seawater Treated with Bromoperoxidase. Limnology and Oceanography, 57, 1857-1866. >https://doi.org/10.4319/lo.2012.57.6.1857
Wever, R. and Van der Horst, M.A. (2013) The Role of Vanadium Haloperoxidases in the Formation of Volatile Brominated Compounds and Their Impact on the Environment. Dalton Transactions, 42, 11778-11786. >https://doi.org/10.1039/c3dt50525a
Theiler, R., Cook, J.C., Hager, L.P. and Siuda, J.F. (1978) Halohydrocarbon Synthesis by Bromoperoxidase. Science, 202, 1094-1096. >https://doi.org/10.1126/science.202.4372.1094
Gkotsi, D.S., Dhaliwal, J., McLachlan, M.M., Mulholand, K.R. and Goss, R.J. (2018) Halogenases: Powerful Tools for Biocatalysis (Mechanisms Applications and Scope). Current Opinion in Chemical Biology, 43, 119-126. >https://doi.org/10.1016/j.cbpa.2018.01.002
Thapa, H.R., et al. (2018) Chemoenzymatic Synthesis of Starting Materials and Characterization of Halogenases Requiring Acyl Carrier Protein-Tethered Substrates. Methods in Enzymology, 604, 333-366.>https://doi.org/10.1016/bs.mie.2018.01.028
Dong, C., Flecks, S., Unversucht, S., Haupt, C., Van Pée, K. and Naismith, J.H. (2005) Tryptophan 7-Halogenase (PrnA) Structure Suggests a Mechanism for Regioselective Chlorination. Science, 309, 2216-2219. >https://doi.org/10.1126/science.1116510
Neubauer, P.R., Widmann, C., Wibberg, D., Schröder, L., Frese, M., Kottke, T., et al. (2018) A Flavin-Dependent Halogenase from Metagenomic Analysis Prefers Bromination over Chlorination. PLOS ONE, 13, e0196797. >https://doi.org/10.1371/journal.pone.0196797
Widmann, C., Ismail, M., Sewald, N. and Niemann, H.H. (2020) Structure of Apo Flavin-Dependent Halogenase Xcc4156 Hints at a Reason for Cofactor-Soaking Difficulties. Acta Crystallographica Section D Structural Biology, 76, 687-697. >https://doi.org/10.1107/s2059798320007731
El Gamal, A., Agarwal, V., Diethelm, S., Rahman, I., Schorn, M.A., Sneed, J.M., et al. (2016) Biosynthesis of Coral Settlement Cue Tetrabromopyrrole in Marine Bacteria by a Uniquely Adapted Brominase-Thioesterase Enzyme Pair. Proceedings of the National Academy of Sciences, 113, 3797-3802. >https://doi.org/10.1073/pnas.1519695113
El Gamal, A., Agarwal, V., Rahman, I. and Moore, B.S. (2016) Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles. Journal of the American Chemical Society, 138, 13167-13170. >https://doi.org/10.1021/jacs.6b08512
Adak, S. and Moore, B.S. (2021) Cryptic Halogenation Reactions in Natural Product Biosynthesis. Natural Product Reports, 38, 1760-1774. >https://doi.org/10.1039/d1np00010a
Gkotsi, D.S., Ludewig, H., Sharma, S.V., Connolly, J.A., Dhaliwal, J., Wang, Y., et al. (2019) A Marine Viral Halogenase that Iodinates Diverse Substrates. Nature Chemistry, 11, 1091-1097. >https://doi.org/10.1038/s41557-019-0349-z
Kalinovskaya, N.I., Dmitrenok, A.S., Kuznetsova, T.A., Frolova, G.M., Christen, R., Laatsch, H., et al. (2008) “Pseudoalteromonas januaria” SUT 11 as the Source of Rare Lipodepsipeptides. Current Microbiology, 56, 199-207. >https://doi.org/10.1007/s00284-007-9023-6
Chau, R., Pearson, L.A., Cain, J., Kalaitzis, J.A. and Neilan, B.A. (2021) A Pseudoalteromonas Clade with Remarkable Biosynthetic Potential. Applied and Environmental Microbiology, 87, e02604-20. >https://doi.org/10.1128/aem.02604-20
Nguyen, D.D., Wu, C.-H., Moree, W.J., Lamsa, A., Medema, M.H., Zhao, X., et al. (2013) Ms/Ms Networking Guided Analysis of Molecule and Gene Cluster Families. Proceedings of the National Academy of Sciences, 110, E2611-E2620. >https://doi.org/10.1073/pnas.1303471110
Ross, A.C., Gulland, L.E.S., Dorrestein, P.C. and Moore, B.S. (2014) Targeted Capture and Heterologous Expression of the Pseudoalteromonas Alterochromide Gene Cluster in Escherichia coli Represents a Promising Natural Product Exploratory Platform. ACS Synthetic Biology, 4, 414-420. >https://doi.org/10.1021/sb500280q
Ren, Y., Liu, R., Zheng, Y., Wang, H., Meng, Q., Zhu, T., et al. (2024) Biosynthetic Mechanism of the Yellow Pigments in the Marine Bacterium Pseudoalteromonas sp. Strain T1lg65. Applied and Environmental Microbiology, 90, e01779-23. >https://doi.org/10.1128/aem.01779-23
Foulston, L.C. and Bibb, M.J. (2010) Microbisporicin Gene Cluster Reveals Unusual Features of Lantibiotic Biosynthesis in Actinomycetes. Proceedings of the National Academy of Sciences, 107, 13461-13466. >https://doi.org/10.1073/pnas.1008285107
Nguyen, N.A., Lin, Z., Mohanty, I., Garg, N., Schmidt, E.W. and Agarwal, V. (2021) An Obligate Peptidyl Brominase Underlies the Discovery of Highly Distributed Biosynthetic Gene Clusters in Marine Sponge Microbiomes. Journal of the American Chemical Society, 143, 10221-10231. >https://doi.org/10.1021/jacs.1c03474
Nguyen, N.A. and Agarwal, V. (2023) A Leader-Guided Substrate Tolerant RiPP Brominase Allows Suzuki-Miyaura Cross-Coupling Reactions for Peptides and Proteins. Biochemistry, 62, 1838-1843. >https://doi.org/10.1021/acs.biochem.3c00222
Edwards, D.J., Marquez, B.L., Nogle, L.M., McPhail, K., Goeger, D.E., Roberts, M.A., et al. (2004) Structure and Biosynthesis of the Jamaicamides, New Mixed Polyketide-Peptide Neurotoxins from the Marine Cyanobacterium Lyngbya majuscula. Chemistry&Biology, 11, 817-833. >https://doi.org/10.1016/j.chembiol.2004.03.030
Esquenazi, E., Jones, A.C., Byrum, T., Dorrestein, P.C. and Gerwick, W.H. (2011) Temporal Dynamics of Natural Product Biosynthesis in Marine Cyanobacteria. Proceedings of the National Academy of Sciences, 108, 5226-5231. >https://doi.org/10.1073/pnas.1012813108
Lukowski, A.L., Hubert, F.M., Ngo, T., Avalon, N.E., Gerwick, W.H. and Moore, B.S. (2023) Enzymatic Halogenation of Terminal Alkynes. Journal of the American Chemical Society, 145, 18716-18721. >https://doi.org/10.1021/jacs.3c05750
Neubauer, P.R., Pienkny, S., Wessjohann, L., Brandt, W. and Sewald, N. (2020) Predicting the Substrate Scope of the Flavin-Dependent Halogenase BrvH. ChemBioChem, 21, 3282-3288. >https://doi.org/10.1002/cbic.202000444
Xu, D., Metz, J., Harmody, D., Peterson, T., Winder, P., Guzmán, E.A., et al. (2022) Brominated and Sulfur-Containing Angucyclines Derived from a Single Pathway: Identification of Nocardiopsistins D-F. Organic Letters, 24, 7900-7904. >https://doi.org/10.1021/acs.orglett.2c02879
Panter, F., Garcia, R., Thewes, A., Zaburannyi, N., Bunk, B., Overmann, J., et al. (2019) Production of a Dibrominated Aromatic Secondary Metabolite by a Planctomycete Implies Complex Interaction with a Macroalgal Host. ACS Chemical Biology, 14, 2713-2719. >https://doi.org/10.1021/acschembio.9b00641
Gäfe, S. and Niemann, H.H. (2023) Structural Basis of Regioselective Tryptophan Dibromination by the Single-Component Flavin-Dependent Halogenase AetF. Acta Crystallographica Section D Structural Biology, 79, 596-609. >https://doi.org/10.1107/s2059798323004254
Adak, S., Lukowski, A.L., Schäfer, R.J.B. and Moore, B.S. (2022) From Tryptophan to Toxin: Nature’s Convergent Biosynthetic Strategy to Aetokthonotoxin. Journal of the American Chemical Society, 144, 2861-2866. >https://doi.org/10.1021/jacs.1c12778
Jiang, Y., Snodgrass, H.M., Zubi, Y.S., Roof, C.V., Guan, Y., Mondal, D., et al. (2022) The Single-Component Flavin Reductase/Flavin-Dependent Halogenase AetF Is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins. Angewandte Chemie International Edition, 61, e202214610. >https://doi.org/10.1002/anie.202214610
Timilsina, S., Potnis, N., Newberry, E.A., Liyanapathiranage, P., Iruegas-Bocardo, F., White, F.F., et al. (2020) Xanthomonas Diversity, Virulence and Plant-Pathogen Interactions. Nature Reviews Microbiology, 18, 415-427. >https://doi.org/10.1038/s41579-020-0361-8
Andrewes, A.G., Jenkins, C.L., Starr, M.P., Shepherd, J. and Hope, H. (1976) Structure of Xanthomonadin I, a Novel Dibrominated Aryl-Polyene Pigment Produced by the Bacterium. Tetrahedron Letters, 17, 4023-4024. >https://doi.org/10.1016/s0040-4039(00)92565-6
郑哲麟, 等. 黄素依赖型溴化酶XanJ参与黄单胞菌菌黄素的生物合成[J]. 植物病理学报, 2023, 53(2): 229-244.>https://doi.org/10.13926/j.cnki.apps.000639