References
Johansen, T. and Lamark, T. (2020) Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. Journal of Molecular Biology, 432, 80-103.
>https://doi.org/10.1016/j.jmb.2019.07.016
Nieto-Torres, J.L., Shanahan, S., Chassefeyre, R., Chaiamarit, T., Zaretski, S., Landeras-Bueno, S., et al. (2021) LC3B Phosphorylation Regulates FYCO1 Binding and Directional Transport of Autophagosomes. Current Biology, 31, 3440-3449.E7.
>https://doi.org/10.1016/j.cub.2021.05.052
Kournoutis, A. and Johansen, T. (2023) LC3B Is a Cofactor for Lmx1b-Mediated Transcription of Autophagy Genes in Dopaminergic Neurons. Journal of Cell Biology, 222, e202303008.
>https://doi.org/10.1083/jcb.202303008
Tang, Y., Kay, A., Jiang, Z. and Arkin, M.R. (2022) LC3B Binds to the Autophagy Protease Atg4b with High Affinity Using a Bipartite Interface. Biochemistry, 61, 2295-2302.
>https://doi.org/10.1021/acs.biochem.2c00482
Wesch, N., Kirkin, V. and Rogov, V.V. (2020) Atg8-Family Proteins—Structural Features and Molecular Interactions in Autophagy and Beyond. Cells, 9, Article 2008.
>https://doi.org/10.3390/cells9092008
Wang, X. and Cui, T. (2017) Autophagy Modulation: A Potential Therapeutic Approach in Cardiac Hypertrophy. American Journal of Physiology-Heart and Circulatory Physiology, 313, H304-H319.
>https://doi.org/10.1152/ajpheart.00145.2017
Hwang, H.J., Ha, H., Lee, B.S., Kim, B.H., Song, H.K. and Kim, Y.K. (2022) LC3B Is an RNA-Binding Protein to Trigger Rapid mRNA Degradation during Autophagy. Nature Communications, 13, Article No. 1436.
>https://doi.org/10.1038/s41467-022-29139-1
Huang, R., Xu, Y., Wan, W., Shou, X., Qian, J., You, Z., et al. (2015) Deacetylation of Nuclear LC3 Drives Autophagy Initiation under Starvation. Molecular Cell, 57, 456-466.
>https://doi.org/10.1016/j.molcel.2014.12.013
Song, T., Su, H., Yin, W., Wang, L. and Huang, R. (2019) Acetylation Modulates LC3 Stability and Cargo Recognition. FEBS Letters, 593, 414-422.
>https://doi.org/10.1002/1873-3468.13327
Nieto-Torres, J.L., Zaretski, S., Liu, T., Adams, P.D. and Hansen, M. (2023) Post-Translational Modifications of ATG8 Proteins—An Emerging Mechanism of Autophagy Control. Journal of Cell Science, 136, jcs259725.
>https://doi.org/10.1242/jcs.259725
Liu, H., Liu, P., Shi, X., Yin, D. and Zhao, J. (2018) NR4A2 Protects Cardiomyocytes against Myocardial Infarction Injury by Promoting Autophagy. Cell Death Discovery, 4, Article No. 27.
>https://doi.org/10.1038/s41420-017-0011-8
Zhang, X., Wang, Q., Wang, X., Chen, X., Shao, M., Zhang, Q., et al. (2019) Tanshinone IIA Protects against Heart Failure Post-Myocardial Infarction via AMPKs/mTOR-Dependent Autophagy Pathway. Biomedicine&Pharmacotherapy, 112, Article ID: 108599.
>https://doi.org/10.1016/j.biopha.2019.108599
Sciarretta, S., Yee, D., Nagarajan, N., Bianchi, F., Saito, T., Valenti, V., et al. (2018) Trehalose-Induced Activation of Autophagy Improves Cardiac Remodeling after Myocardial Infarction. Journal of the American College of Cardiology, 71, 1999-2010.
>https://doi.org/10.1016/j.jacc.2018.02.066
Gao, F., Su, Q., Yang, W., Pang, S., Wang, S., Cui, Y., et al. (2018) Functional Variants in the LC3B Gene Promoter in Acute Myocardial Infarction. Journal of Cellular Biochemistry, 119, 7339-7349.
>https://doi.org/10.1002/jcb.27035
Da‘as, S.I., Fakhro, K., Thanassoulas, A., Krishnamoorthy, N., Saleh, A., Calver, B.L., et al. (2018) Hypertrophic Cardiomyopathy-Linked Variants of Cardiac Myosin-Binding Protein C3 Display Altered Molecular Properties and Actin Interaction. Biochemical Journal, 475, 3933-3948.
>https://doi.org/10.1042/bcj20180685
Singh, S.R., Zech, A.T.L., Geertz, B., Reischmann-Düsener, S., Osinska, H., Prondzynski, M., et al. (2017) Activation of Autophagy Ameliorates Cardiomyopathy in Mybpc3-Targeted Knockin Mice. Circulation: Heart Failure, 10, e004140.
>https://doi.org/10.1161/circheartfailure.117.004140
Orphanou, N., Papatheodorou, E. and Anastasakis, A. (2021) Dilated Cardiomyopathy in the Era of Precision Medicine: Latest Concepts and Developments. Heart Failure Reviews, 27, 1173-1191.
>https://doi.org/10.1007/s10741-021-10139-0
Zhou, J., Ng, B., Ko, N.S.J., Fiedler, L.R., Khin, E., Lim, A., et al. (2019) Titin Truncations Lead to Impaired Cardiomyocyte Autophagy and Mitochondrial Function in Vivo. Human Molecular Genetics, 28, 1971-1981.
>https://doi.org/10.1093/hmg/ddz033
Kanamori, H., Naruse, G., Yoshida, A., Minatoguchi, S., Watanabe, T., Kawaguchi, T., et al. (2019) Metformin Enhances Autophagy and Provides Cardioprotection in δ-Sarcoglycan Deficiency-Induced Dilated Cardiomyopathy. Circulation: Heart Failure, 12, e005418.
>https://doi.org/10.1161/circheartfailure.118.005418
Kanamori, H., Yoshida, A., Naruse, G., Endo, S., Minatoguchi, S., Watanabe, T., et al. (2022) Impact of Autophagy on Prognosis of Patients with Dilated Cardiomyopathy. Journal of the American College of Cardiology, 79, 789-801.
>https://doi.org/10.1016/j.jacc.2021.11.059
Gong, H., Lyu, X., Dong, L., Tan, S., Li, S., Peng, J., et al. (2022) Obstructive Sleep Apnea Impacts Cardiac Function in Dilated Cardiomyopathy Patients through Circulating Exosomes. Frontiers in Cardiovascular Medicine, 9, Article 699764.
>https://doi.org/10.3389/fcvm.2022.699764
Shi, S. and Jiang, P. (2022) Therapeutic Potentials of Modulating Autophagy in Pathological Cardiac Hypertrophy. Biomedicine&Pharmacotherapy, 156, Article ID: 113967.
>https://doi.org/10.1016/j.biopha.2022.113967
Oldfield, C.J., Duhamel, T.A. and Dhalla, N.S. (2020) Mechanisms for the Transition from Physiological to Pathological Cardiac Hypertrophy. Canadian Journal of Physiology and Pharmacology, 98, 74-84.
>https://doi.org/10.1139/cjpp-2019-0566
Oyabu, J., Yamaguchi, O., Hikoso, S., Takeda, T., Oka, T., Murakawa, T., et al. (2013) Autophagy-Mediated Degradation Is Necessary for Regression of Cardiac Hypertrophy during Ventricular Unloading. Biochemical and Biophysical Research Communications, 441, 787-792.
>https://doi.org/10.1016/j.bbrc.2013.10.135
Kobara, M., Toba, H. and Nakata, T. (2022) Roles of Autophagy in Angiotensin II-Induced Cardiomyocyte Apoptosis. Clinical and Experimental Pharmacology and Physiology, 49, 1342-1351.
>https://doi.org/10.1111/1440-1681.13719
Xie, Y., Lai, S., Lin, Q., Xie, X., Liao, J., Wang, H., et al. (2018) CDC20 Regulates Cardiac Hypertrophy via Targeting Lc3-Dependent Autophagy. Theranostics, 8, 5995-6007.
>https://doi.org/10.7150/thno.27706
Zhang, Y., Ding, Y., Li, M., Yuan, J., Yu, Y., Bi, X., et al. (2022) Microrna-34c-5p Provokes Isoprenaline-Induced Cardiac Hypertrophy by Modulating Autophagy via Targeting Atg4b. Acta Pharmaceutica Sinica B, 12, 2374-2390.
>https://doi.org/10.1016/j.apsb.2021.09.020
Jin, Y., Zhou, H., Fan, D., Che, Y., Wang, Z., Wang, S., et al. (2020) TMEM173 Protects against Pressure Overload‐Induced Cardiac Hypertrophy by Modulating Autophagy. Journal of Cellular Physiology, 236, 5176-5192.
>https://doi.org/10.1002/jcp.30223
Ott, C., Jung, T., Brix, S., John, C., Betz, I.R., Foryst-Ludwig, A., et al. (2021) Hypertrophy-Reduced Autophagy Causes Cardiac Dysfunction by Directly Impacting Cardiomyocyte Contractility. Cells, 10, Article 805.
>https://doi.org/10.3390/cells10040805
Liu, R., Zhang, H.B., Yang, J., et al. (2018) Curcumin Alleviates Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis through Inhibition of Autophagy and Activation of mTOR. European Review for Medical and Pharmacological Sciences, 22, 7500-7508.
杨伟, 苗立坤, 陈章荣. 自噬与心肌重构研究进展[J]. 心血管病学进展, 2022, 43(6): 535-537, 546.
Farhan, H., Kundu, M. and Ferro-Novick, S. (2017) The Link between Autophagy and Secretion: A Story of Multitasking Proteins. Molecular Biology of the Cell, 28, 1161-1164.
>https://doi.org/10.1091/mbc.e16-11-0762
Wu, X., Liu, Z., Yu, X., Xu, S. and Luo, J. (2020) Autophagy and Cardiac Diseases: Therapeutic Potential of Natural Products. Medicinal Research Reviews, 41, 314-341.
>https://doi.org/10.1002/med.21733.
张东霞, 刘凤岐, 张瑞英. 自噬与心力衰竭的治疗[J]. 心血管病学进展, 2017, 38(6): 696-699.