jocr Journal of Organic Chemistry Research 2330-5231 2330-524X beplay体育官网网页版等您来挑战! 10.12677/jocr.2024.122030 jocr-89870 Articles 化学与材料 Prins反应与Prins环化反应的研究进展
Advances in the Study of the Prins Reaction and the Prins Cyclization Reaction
丹智才让 张虎虎 兰州交通大学化学化工学院,甘肃 兰州 01 04 2024 12 02 326 336 3 4 :2024 18 4 :2024 18 6 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Prins反应和Prins环化反应是重要的合成策略,自发现以来就受到合成化学家的广泛关注。Prins反应是醛或酮与烯烃或炔烃在酸催化下的缩合反应,为构建碳碳键和环状化合物提供了一种高效途径,具有很高的原子经济性和合成效率,并在药物和天然产物分子的合成中得到了广泛的应用。因此,本文通过选定近些年一些代表性实例介绍了Prins反应的研究进展。
Prins reactions and Prins cyclization reactions are important synthetic strategies that have received much attention from synthetic chemists since their discovery. The Prins reaction, a condensation reaction of aldehydes or ketones with olefins or alkynes under acid catalysis, offers an efficient avenue for the construction of carbon-carbon bonds and cyclic compounds. Characterized by high atom economy and synthetic efficiency, it has been widely employed in the synthesis of pharmaceuticals and natural product molecules. Therefore, this paper presents the progress of research on the Prins reaction by selecting some representative examples in recent years.
Prins反应,碳环,杂环
Prins Reaction
Carbocyclic Heterocyclic
1. 引言

Prins反应是在酸催化下进行的一种醛或酮与烯烃或炔烃的缩合反应。通常的关键中间体是通过羰基对烯烃进行亲电加成而形成的碳正离子中间体,随后进一步反应生成高烯丙醇或烯丙醇类化合物。这一反应于1919年首次被报道 [1] ,涉及烯烃与醛的加成,并最终通过质子消除生成高烯丙醇( 图1 )。近年来,Prins反应由于可直接获得含氧、氮和硫的杂环化合物而获得了极大的关注 [2] [3] [4] [5] 。成为了合成功能化四氢吡喃(THP) [6] [7] [8] 、二氢吡喃 [9] [10] 、四氢吡喃酮 [11] [12] 和哌啶/吡咯烷核 [13] - [19] 的有效方法。

Figure 1. Mechanism of (a) classical Prins reaction and (b) Prins cyclization reaction--图1. (a)经典Prins反应和(b) Prins环化反应的机理--
2. Prins反应的研究进展 <xref></xref>2.1. Prins反应构建碳环

2009年余正坤小组 [20] 报道了利用Prins环化反应合成炔基二乙基衍生物的研究成果。该反应使用FeCl3或FeBr3做催化剂,选择性地得到五元碳环和杂环,然后通过Suzuki偶联将产物有效地转化为乙烯基芳烃。该方案为乙烯基碳卤键的合成提供了一条新的途径( 图2 )。

2018年Taichi Kano小组 [21] 报道了利用Prins内型环化反应合成氨基茚衍生物的研究成果,该反应以2-烯基苯甲醛为起始原料,与BocNH2在酸催化下先原位生成亚胺中间体,随后质子化得到目标产物。这项研究成功合成了多种氨基茚衍生物。此外,他们使用手性N-三氟甲磺酰基磷酰胺作为催化剂,实现了氨基茚衍生物的不对称合成( 图3 )。

Figure 2. Synthesis of alkynyl diethyl derivatives--图2. 炔基二乙基衍生物的合成-- Figure 3. Synthesis of aminoindene derivatives--图3. 氨基茚衍生物的合成--

2019年周岭小组 [22] 报道了以手性磷酸为催化剂,原位生成醌甲基化物和邻氨基苯甲醛的不对称Prins环化反应。该方法以优异的产率和对映体选择性(高达99%的产率和99% ee)获得不同官能化的呋喃并四氢喹啉衍生物。对比实验表明,苯酚的脱芳构化在转化过程中起着重要作用( 图4 )。

Figure 4. Synthesis of furanotetrahydroquinoline derivatives--图4. 呋喃并四氢喹啉衍生物的合成--

2020年Subba Reddy小组 [23] 发展了一种利用串联Prins环化反应合成吲哚稠合螺环-1,4-重氮杂环辛烷衍生物的新方法。这是关于合成八元螺二氮杂环辛烷骨架的第一篇报告,由于环张力,八元螺二氮杂环辛烷骨架不易获得,但该骨架对于药物研发具有重大意义。该反应通过刘易斯酸促进的Prins型环化,并以高立体选择性构建了吲哚稠合的螺二氮杂环辛烷框架。该方法反应条件温和、反应时间短、底物范围广、转化率高、非对映选择性好( 图5 )。

Figure 5. Synthesis of eight-membered spiro-diazacyclooctanes--图5. 八元螺二氮杂环辛烷的合成--

2022年王全瑞小组 [24] 报道了利用Prins/Friedel-Crafts串联反应合成六氢-2H苯并[g]色烯衍生物的方法。该方法在催化剂BF3∙OEt2作用下,δ,ε-不饱和醇与芳乙醛先发生偶联反应,生成氧代碳正离子中间体,进而发生Prins环化反应生成叔碳正离子,最后经历连续的分子内Friedel-Crafts环化得到三环产物。该方法能够在一个单一操作中串联形成三个新的化学键,并具有高产率和立体选择性。同时,当有环取代基参与时,也可以成功地合成多种螺环衍生物,进一步证明了该方法的普适性( 图6 )。

Figure 6. Synthesis of hexahydro-2H-benzo [g] chromenes--图6. 六氢-2H苯并[g]色烯的合成--

2023年王丽佳小组 [25] 报道了一种铟催化的Prins串联环化反应。该反应为合成多种多环吲哚框架提供了一种高效实用的方法(30个实例,高达98%的产率),所得到的产物可进行进一步的转化并利用于天然药物的合成。该反应条件温和、操作简单、底物具有较好的普适性( 图7 )。

Figure 7. Synthesis of thienyl polycyclic fused indoles--图7. 噻吩基稠环吲哚的合成--

2023年Chi-Sing Lee小组 [26] 报道了磷菌素A的对映选择性合成方法。该方法通过Prins反应,一锅法建立了AB环体系。此外,作者发现该反应存在两种C环生成策略(环氧化和γ-羟基化),这为磷菌素A及其类似结构的制备提供了一种新的合成策略,同时也可以用于生物制药的研究当中( 图8 )。

Figure 8. Synthesis of phomactin A--图8. 磷菌素A的合成--

超分子催化剂可以应用于Prins反应当中,因为超分子催化剂可以将反应底物限制在封闭环境中,从而稳定中间体并促进整个过程。Bergman及其同事 [27] [28] 在2021年采用了一种镓衍生的超分子催化剂,该催化剂具有阳离子稳定能力以及内部的疏水性质。作者利用该催化剂合成了两种香茅醛类化合物,该反应表现出优异的产率和高立体选择性。值得一提的是,在无该催化剂的情况下反应形成了烯烃水合混合物( 图9 )。

Figure 9. Synthesis of citronellal compounds--图9. 香茅醛类化合物的合成--
<xref></xref>2.2. Prins反应构建杂环

2007年Yadav小组 [29] 报道了一种三组分一锅法合成高取代叠氮基四氢吡喃衍生物的方法。该反应通过Prins环化和叠氮化反应,实现了醛、高烯丙醇和叠氮化钠的三组分偶联,并选择性地合成了4-叠氮基四氢吡喃衍生物。同时该方法成本低且操作简单,为三取代叠氮基四氢吡喃衍生物的合成提供了有效途径( 图10 )。

Figure 10. Synthesis of azidotetrahydropyran derivatives--图10. 叠氮基四氢吡喃衍生物的合成--

2007年史敏小组 [30] 报道了环丙基甲醇与醛的Prins反应,在温和条件下得到具有良好立体和区域选择性的四氢吡喃衍生物。该方法为合成四氢吡喃衍生物提供了一种新的合成策略( 图11 )。

Figure 11. Synthesis of tetrahydropyran derivatives--图11. 四氢吡喃衍生物的合成--

碘分子由于其具有路易斯酸性质,已在不同的反应中用作催化剂。2007年Yadav小组 [31] 报道了在温和的条件下利用碘分子作为催化剂合成4-碘四氢吡喃衍生物的方法。该方法具有反应时间短、产率高、底物普适性好的特点。此外,该小组在进一步研究后发现 [32] ,可以利用该方法从D-葡萄糖仲醇衍生物中制备糖基呋喃并吡喃衍生物。另外碘分子也能催化不同炔醇和醛之间的偶联反应 [33] ,得到相应的4-碘代二氢吡喃衍生物。除此之外碘催化的Prins环化反应还可用于制备六氢苯并异色烯衍生物 [34] ( 图12 )。

Figure 12. Iodine-catalyzed Prins reaction--图12. 碘催化的Prins反应--

2008年Yadav小组 [35] 报道了一种利用Prins环化反应合成4-氨基四氢吡喃衍生物的方法。该方法以高烯丙醇和羰基化合物为原料,使用氯化铈作催化剂,合成了一系列多取代的4-氨基四氢吡喃衍生物,该反应表现出高产率和高立体选择性的特点。对于该反应磷钼酸也可以作为催化剂 [36] ,并以良好的产率(80~92%)得到4-氨基四氢吡喃衍生物( 图13 )。

Figure 13. Synthesis of 4-aminotetrahydropyran derivatives--图13. 4-氨基四氢吡喃衍生物的合成--

2007年,Minehan小组 [37] 报道了一种一锅法合成(R)-2,6-二取代四氢吡喃衍生物的方法。该方法以碘取代丙烯衍生物为原料,使用铟金属作为唯一的促进剂。在反应过程中通过生成的碘化铟充当路易斯酸,来催化高烯丙醇和羰基化合物之间的Prins环化反应,最后合成相应的四氢吡喃衍生物( 图14 )。

Figure 14. Synthesis of tetrahydropyran derivatives--图14. 四氢吡喃衍生物的合成--

2009年,Spivey小组 [38] 报道了一种利用Prins环化反应合成2,3-二取代四氢呋喃(THFs)衍生物的方法。该反应在无亲核试剂的情况下,碳正离子中间体被溴化物捕获,得到顺式和反式构型的产物。所述Prins反应由苯乙烯基烯烃通过苄基阳离子闭环驱动( 图15 )。研究证明,该反应可以用于天然产物Cordigol的简易合成( 图16 )。

Figure 15. Synthesis of 2,3-disubstituted tetrahydrofuran derivatives--图15. 2,3-二取代四氢呋喃衍生物的合成-- Figure 16. Natural products: Cordigol--图16. 天然产物:Cordigol--

2015年Martin小组 [39] 提出了一种利用Prins环化反应合成二氢吡喃衍生物的新方法。该方法利用卤化铁作为催化剂,并加入三甲基甲硅烷基卤化物作为淬灭剂,将碳正离子中间体的亲核末端淬灭。该反应不但表现出较高的非对映选择性,还提供了一种可直接获得含有三个立体中心二氢吡喃衍生物的方法( 图17 )。

Figure 17. Synthesis of dihydropyran derivatives--图17. 二氢吡喃衍生物的合成-- Figure 18. Re2O7-catalyzed Prins cyclization--图18. Re2O7催化的Prins反应--

2019年Afeke小组 [40] 报道了以七氧化二铼作为催化剂的Prins反应。该反应首先发生烯丙醇异构化,并原位生成Prins环化所需的碳正离子(δ-羟基酮中间体)。这一策略可以在烷基链上引入甲基取代基,并获得了优异的产率和非对映选择性( 图18 )。

2023年Yong Seo Cho小组 [41] 报道了一种合成1,6-二氮杂环庚烷的方法。该方法以N-酰亚胺离子与烯丙基锂离子为原料,通过Prins反应合成了1,6-二氮杂环庚烷。该方法是第一个使用aza-Prins反应生成十元氮杂环的方法,可以作为合成复杂N-杂环的工具,并为直接合成中等大小的氮杂环化合物提供了一种新的合成策略( 图19 )。

Figure 19. Synthesis of 1,6-diazecanesby--图19. 1,6-二氮杂环庚烷的合成--
<xref></xref>2.3. 特殊底物的Prins反应

虽然Prins反应通常使用烯烃、醛和酮作为π-载体,但也可以用其他改性反应物代替这三种成分中的一种,从而扩大Prins反应的范围,提供不同性质的产物。

2003年Miranda小组 [42] 报道了一种以3-炔丙基醇与醛作为原料,通过FeX3催化的Prins反应,合成卤代二氢吡喃衍生物的方法。其中卤化铁充当终止反应的路易斯酸和亲核卤化物。值得一提的是,当反应物为内部炔烃时,优先合成异构化的亚烷基四氢呋喃。在2018年Kato小组 [43] 报道了一种以二炔醇与醛为原料合成四氢呋喃衍生物的方法。在该方法中,通过Prins环化产生了双亚烷基四氢呋喃中间体,随后该中间体经历分子重组,形成了开链氧代卡宾离子,最终发生环化反应得到目标产物( 图20 )。

Figure 20. Prins cyclization of alkynols--图20. 炔醇的Prins环化反应--

2003年Karupaiyan课题组 [44] 报道了以TMSOTf催化Prins环化反应的实例,研究了手性高丙二烯基醇与醛的反应。结果表明,在该反应中,三甲基甲硅烷基的存在对于引发环化步骤是必要的。该策略以优异的产率合成二甲基四氢吡喃衍生物,并且得到的是单一非对映异构体( 图21 )。

Figure 21. Prins cyclization of chiral allenyl alcohols--图21. 手性联烯醇的Prins环化反应--

2018年Banerjee课题组 [45] 报道了一种新颖的合成方法。该反应以环丙烷甲醛衍生物为原料,并使用炔作为π-载体,最终以良好的产率形成双环化合物。这种转化非常有趣,因为提供了一种从环丙烷合成氧杂环化合物的直接方法( 图22 )。

Figure 22. Prins reaction of cyclopropanecarbaldehydes--图22. 环丙烷甲醛的Prins反应--
3. 总结

在上文中,我们对Prins反应的研究进展进行了全面的梳理与总结。近些年,Prins反应已经取得了令人瞩目的进展,不仅开发了新的催化体系,让反应条件变得更加友好,而且通过使用复杂的起始材料,扩大了该反应的应用范围。相信随着研究的深入与科技的发展,Prins反应会有更广阔的前景。

References Prins, H.J. (1919) The Reciprocal Condensation of Unsaturated Organic Compounds. Chemisch Weekblad, 16, 1510-1526. Dobbs, A.P., Guesné, S.J.J., Martinović, S., Coles, S.J. and Hursthouse, M.B. (2003) A Versatile Indium Trichloride Mediated Prins-Type Reaction to Unsaturated Heterocycles. The Journal of Organic Chemistry, 68, 7880-7883. >https://doi.org/10.1021/jo034981k Ponra, S. and Majumdar, K.C. (2016) Brønsted Acid-Promoted Synthesis of Common Heterocycles and Related Bio-Active and Functional Molecules. RSC Advances, 6, 37784-37922. >https://doi.org/10.1039/c5ra27069c Olier, C., Kaafarani, M., Gastaldi, S. and Bertrand, M.P. (2010) Synthesis of Tetrahydropyrans and Related Heterocycles via Prins Cyclization; Extension to Aza-Prins Cyclization. Tetrahedron, 66, 413-445. >https://doi.org/10.1016/j.tet.2009.10.069 Bondalapati, S., Gogoi, P., Indukuri, K. and Saikia, A.K. (2012) Diastereoselective Synthesis of Substituted Tetrahydrothiopyrans via (3,5)-Thionium-Ene Cyclization Reaction. The Journal of Organic Chemistry, 77, 2508-2512. >https://doi.org/10.1021/jo2023944 Cloninger, M.J. and Overman, L.E. (1999) Stereocontrolled Synthesis of Trisubstituted Tetrahydropyrans. Journal of the American Chemical Society, 121, 1092-1093. >https://doi.org/10.1021/ja9838007 Chan, K.-P. and Loh, T.-P. (2005) Prins Cyclizations in Silyl Additives with Suppression of Epimerization: Versatile Tool in the Synthesis of the Tetrahydropyran Backbone of Natural Products. Organic Letters, 7, 4491-4494. >https://doi.org/10.1021/ol051951q Chan, K.-P., Seow, A.-H. and Loh, T.-P. (2007) Stereochemical Prins Cyclization: Electronic versus Steric Effects on the Synthesis of 2,4,6-Trisubstituted Tetrahydropyran Rings. Tetrahedron Letters, 48, 37-41. >https://doi.org/10.1016/j.tetlet.2006.11.023 Saikia, A. and Reddy, U. (2010) One-Pot, Three-Component Synthesis of 4-Aryl-5,6-Dihydropyran via Prins-Friedel-Crafts Reaction. Synlett, 2010, 1027-1032. >https://doi.org/10.1055/s-0029-1219779 Dobbs, A.P. and Martinović, S. (2002) The Silyl-Prins Reaction: A Novel Method for the Synthesis of Dihydropyrans. Tetrahedron Letters, 43, 7055-7057. >https://doi.org/10.1016/s0040-4039(02)01558-7 Cossey, K.N. and Funk, R.L. (2004) Diastereoselective Synthesis of 2,3,6-Trisubstituted Tetrahydropyran-4-Ones via Prins Cyclizations of Enecarbamates: A Formal Synthesis of (+)-Ratjadone A. Journal of the American Chemical Society, 126, 12216-12217. >https://doi.org/10.1021/ja046940r Reddy, B.V.S., Anjum, S.R. and Sridhar, B. (2016) A Novel Self-Terminated Prins Strategy for the Synthesis of Tetrahydropyran-4-One Derivatives and Their Behaviour in Fisher Indole Synthesis. RSC Advances, 6, 75133-75137. >https://doi.org/10.1039/c6ra11218h Carballo, R.M., Ramírez, M.A., Rodríguez, M.L., Martín, V.S. and Padrón, J.I. (2006) Iron(III)-Promoted Aza-Prins-Cyclization: Direct Synthesis of Six-Membered Azacycles. Organic Letters, 8, 3837-3840. >https://doi.org/10.1021/ol061448t Yadav, J.S., Subba Reddy, B.V., Chaya, D.N., Narayana Kumar, G.G.K.S., Aravind, S., Kunwar, A.C., et al. (2008) Gallium Iodide/Iodine as a Versatile Reagent for the Aza-Prins Cyclization: An Expeditious Synthesis of 4-Iodopiperidines. Tetrahedron Letters, 49, 3330-3334. >https://doi.org/10.1016/j.tetlet.2008.03.006 Kishi, Y., Nagura, H., Inagi, S. and Fuchigami, T. (2008) Facile and Highly Efficient Synthesis of Fluorinated Heterocycles via Prins Cyclization in Ionic Liquid Hydrogen Fluoride Salts. Chemical Communications, No. 33, 3876-3878. >https://doi.org/10.1039/b806389c Nannei, R., Dallavalle, S., Merlini, L., Bava, A. and Nasini, G. (2006) Synthesis of (+)-Spirolaxine Methyl Ether. The Journal of Organic Chemistry, 71, 6277-6280. >https://doi.org/10.1021/jo060839i Clarke, P.A. and Santos, S. (2006) Strategies for the Formation of Tetrahydropyran Rings in the Synthesis of Natural Products. European Journal of Organic Chemistry, 2006, 2045-2053. >https://doi.org/10.1002/ejoc.200500964 Crosby, S.R., Harding, J.R., King, C.D., Parker, G.D. and Willis, C.L. (2002) Prins Cyclizations: Labeling Studies and Application to Natural Product Synthesis. Organic Letters, 4, 3407-3410. >https://doi.org/10.1021/ol020127o Subba Reddy, B.V., Nair, P.N., Antony, A., Lalli, C. and Grée, R. (2017) The Aza-Prins Reaction in the Synthesis of Natural Products and Analogues. European Journal of Organic Chemistry, 2017, 1805-1819. >https://doi.org/10.1002/ejoc.201601411 Xu, T., Yu, Z. and Wang, L. (2009) Iron-Promoted Cyclization/Halogenation of Alkynyl Diethyl Acetals. Organic Letters, 11, 2113-2116. >https://doi.org/10.1021/ol9005689 Bai, J., Yasumoto, K., Kano, T. and Maruoka, K. (2018) Synthesis of 1-Aminoindenes through Aza-Prins-Type Cyclization. Chemistry: A European Journal, 24, 10320-10323. >https://doi.org/10.1002/chem.201802448 Sun, H.-R., Zhao, Q., Yang, H., Yang, S., Gou, B.-B., Chen, J., et al. (2019) Chiral Phosphoric-Acid-Catalyzed Cascade Prins Cyclization. Organic Letters, 21, 7143-7148. >https://doi.org/10.1021/acs.orglett.9b02714 Rapelli, C., Sridhar, B. and Subba Reddy, B.V. (2020) Tandem Prins Cyclization for the Synthesis of Indole Fused Spiro-1,4-Diazocane Scaffolds. Organic & Biomolecular Chemistry, 18, 6710-6715. >https://doi.org/10.1039/d0ob01384f Meng, S., Guo, W., Liu, J., Zheng, J. and Wang, Q. (2022) A Tandem Prins/Friedel-Crafts Cyclization Strategy for the Stereoselective Synthesis of Hexahydro-2H-Benzo[g]chromenes. ChemistrySelect, 7, e202202760. >https://doi.org/10.1002/slct.202202760 Huang, Z.-B., Zhao, M.-H., Liu, X. and Wang, L. (2023) Synthesis of Thienyl Polycyclic Fused Indoles Based on the Indium Catalyzed Prins/Friedel-Crafts Tandem Reaction. Asian Journal of Organic Chemistry, 12, e202300147. >https://doi.org/10.1002/ajoc.202300147 Sun, L., Huang, J., Wang, B., Du, G. and Lee, C. (2023) Formal Synthesis of (+)-Phomactin A via a Prins/Conia-Ene Cascade and γ-Hydroxylation Strategy. ChemistrySelect, 8, e202304204. >https://doi.org/10.1002/slct.202304204 Hart-Cooper, W.M., Clary, K.N., Toste, F.D., Bergman, R.G. and Raymond, K.N. (2012) Selective Monoterpene-Like Cyclization Reactions Achieved by Water Exclusion from Reactive Intermediates in a Supramolecular Catalyst. Journal of the American Chemical Society, 134, 17873-17876. >https://doi.org/10.1021/ja308254k Hart-Cooper, W.M., Zhao, C., Triano, R.M., Yaghoubi, P., Ozores, H.L., Burford, K.N., et al. (2015) The Effect of Host Structure on the Selectivity and Mechanism of Supramolecular Catalysis of Prins Cyclizations. Chemical Science, 6, 1383-1393. >https://doi.org/10.1039/c4sc02735c Yadav, J.S., Subba Reddy, B.V., Maity, T. and Narayana Kumar, G.G.K.S. (2007) A Diastereoselective Synthesis of 4-Azidotetrahydropyrans via the Prins-Cyclization. Tetrahedron Letters, 48, 7155-7159. >https://doi.org/10.1016/j.tetlet.2007.07.195 Tian, G.-Q. and Shi, M. (2007) Brønsted Acid-Mediated Stereoselective Cascade Construction of Functionalized Tetrahydropyrans from 2-(Arylmethylene)Cyclopropylcarbinols and Aldehydes. Organic Letters, 9, 2405-2408. >https://doi.org/10.1021/ol0709026 Yadav, J.S., Subba Reddy, B.V., Narayana Kumar, G.G.K.S. and Swamy, T. (2007) Iodine as a Versatile Reagent for the Prins-Cyclization: An Expeditious Synthesis of 4-Iodotetrahydropyran Derivatives. Tetrahedron Letters, 48, 2205-2208. >https://doi.org/10.1016/j.tetlet.2007.01.076 Yadav, J.S., Subba Reddy, B.V., Singh, A.P., Chaya, D.N., Chatterjee, D. and Kunwar, A.C. (2010) First Example of Carbohydrate-Based Prins Cyclization: A Novel Class of Sugar-Annulated Tetrahydropyrans. Tetrahedron Letters, 51, 1475-1478. >https://doi.org/10.1016/j.tetlet.2010.01.028 Yadav, J.S., Thrimurtulu, N., Lakshmi, K.A., Prasad, A.R. and Reddy, B.V.S. (2010) The Silylalkyne-Prins Cyclization: A Novel Synthesis of 4-Iododihydropyrans. Tetrahedron Letters, 51, 661-663. >https://doi.org/10.1016/j.tetlet.2009.11.103 Silva, L.F. and Quintiliano, S.A. (2009) An Expeditious Synthesis of Hexahydrobenzo[f]isochromenes and of Hexahydrobenzo[f]isoquinoline via Iodine-Catalyzed Prins and Aza-Prins Cyclization. Tetrahedron Letters, 50, 2256-2260. >https://doi.org/10.1016/j.tetlet.2009.02.202 Yadav, J.S., Reddy, B.V.S., Kumar, G.G.K.S.N. and Reddy, G.M. (2007) CeCl 3·7H 2O/AcCl-Catalyzed Prins-Ritter Reaction Sequence: A Novel Synthesis of 4-Amido Tetrahydropyran Derivatives. Tetrahedron Letters, 48, 4903-4906. >https://doi.org/10.1016/j.tetlet.2007.05.056 Yadav, J.S., Reddy, B.V.S., Aravind, S., Kumar, G.G.K.S.N., et al. (2008) Three-Component, One-Pot Diastereoselective Synthesis of 4-Amidotetrahydropyrans via the Prins-Ritter Reaction Sequence. Tetrahedron, 64, 3025-3031. >https://doi.org/10.1016/j.tet.2008.01.038 Pham, M., Allatabakhsh, A. and Minehan, T.G. (2007) An Environmentally Benign Synthesis of Cis-2,6-Disubstituted Tetrahydropyrans via Indium-Mediated Tandem Allylation/Prins Cyclization Reaction. The Journal of Organic Chemistry, 73, 741-744. >https://doi.org/10.1021/jo7016857 Spivey, A.C., Laraia, L., Bayly, A.R., Rzepa, H.S. and White, A.J.P. (2010) Stereoselective Synthesis of Cis-and Trans-2,3-Disubstituted Tetrahydrofurans via Oxonium-Prins Cyclization: Access to the Cordigol Ring System. Organic Letters, 12, 900-903. >https://doi.org/10.1021/ol9024259 Pérez, S.J., Purino, M., Miranda, P.O., Martín, V.S., Fernández, I. and Padrón, J.I. (2015) Prins Cyclization Catalyzed by a Fe III/Trimethylsilyl Halide System: The Oxocarbenium Ion Pathway versus the [2+2] Cycloaddition. Chemistry: A European Journal, 21, 15211-15217. >https://doi.org/10.1002/chem.201502488 Afeke, C., Xie, Y. and Floreancig, P.E. (2019) Re 2O 7-Catalyzed Approach to Spirocyclic Ether Formation from Acyclic Precursors: Observation of Remote Stereoinduction. Organic Letters, 21, 5064-5067. >https://doi.org/10.1021/acs.orglett.9b01660 Kim, G.U., Cho, H., Lee, J.K., Lee, J.Y., Tae, J., Min, S., et al. (2023) Stereoselective Synthesis of 1,6-Diazecanes by a Tandem Aza-Prins Type Dimerization and Cyclization Process. Chemical Communications, 59, 82-85. >https://doi.org/10.1039/d2cc05133h Miranda, P.O., Díaz, D.D., Padrón, J.I., Bermejo, J. and Martín, V.S. (2003) Iron(III)-Catalyzed Prins-Type Cyclization Using Homopropargylic Alcohol: A Method for the Synthesis of 2-Alkyl-4-Halo-5,6-Dihydro-2H-Pyrans. Organic Letters, 5, 1979-1982. >https://doi.org/10.1021/ol034568z Kato, M. and Saito, A. (2018) Domino Synthesis of 2,3-Dialkylidenetetrahydrofurans via Tandem Prins Cyclization-Skeletal Reorganization. Organic Letters, 20, 4709-4712. >https://doi.org/10.1021/acs.orglett.8b02114 Cho, Y.S., Karupaiyan, K., Kang, H.J., Pae, A.N., Cha, J.H., Koh, H.Y. and Chang, M.-H. (2003) Synthesis of Novel 2,6-Disubstituted-3,4-Dimethylidene Tetrahydropyrans via Prins-Type Cyclization. Chemical Communications, No. 18, 2346-2347. >https://doi.org/10.1002/chin.200403113 Kumar, P., Dey, R. and Banerjee, P. (2018) Exploitation of Cyclopropane Carbaldehydes to Prins Cyclization: Quick Access to (E)-Hexahydrooxonine and Octahydrocyclopenta[b]pyran. Organic Letters, 20, 5163-5166. >https://doi.org/10.1021/acs.orglett.8b02094
Baidu
map