Figure 5. Selective 1,4-addition and cycloaddition reactions of unsaturated ketoesters with alkylene cyclopropane--图5. 不饱和酮酸酯与亚烷基环丙烷的选择性1,4-加成反应和环加成反应--
Figure 6. Chiral copper(II) complex-catalysed enantioselective Michael addition of malonates to β,γ-unsaturated-α-ketoesters--图6. 手性铜(II)配合物催化丙二酸酯与β, γ-不饱和-α-酮酯的对映选择性Michael加成反应--2.2. 不饱和酮酸酯作为C2合成子的应用
Figure 10. Enantioselective [2 + 3] cycloaddition reaction of unsaturated ketoesters for the synthesis of spirocyclic compounds--图10. 不饱和酮酸酯对映选择性[2 + 3]环加成反应合成螺环化合物--
Figure 15. Synthesis of dihydropyridine derivatives by cycloaddition reaction of α-enamine ketone and unsaturated ketoesters [3 + 3]--图15. α-烯胺酮与不饱和酮酸酯[3 + 3]环加成反应合成二氢吡啶衍生物--2.4. 不饱和酮酸酯作为C4合成子的应用Figure 16. Synthesis of tetrahydropyran derivatives and dihydropyran derivatives from unsaturated ketoesters--图16. 不饱和酮酸酯合成四氢吡喃衍生物和二氢吡喃衍生物--
Figure 18. Non chiral gold (I) catalysts and chiral Rh (III) Lewis acid catalysts promote the cyclization reaction of unsaturated ketoesters with alkyne alcohols [4+2]--图18. 非手性金(I)催化剂和手性Rh(III)路易斯酸催化剂促进不饱和酮酸酯与炔醇[4 + 2]环化反应--
References
Yu, S., Cai, Q., Wang, C., Hou, J., Liang, J., Jiao, Z., et al. (2023) Enantioselective Friedel—Crafts Alkylation of Indoles with Β, γ-Unsaturated α-Ketoesters Catalyzed by New Copper(I) Catalysts. The Journal of Organic Chemistry, 88, 3046-3053. >https://doi.org/10.1021/acs.joc.2c02749
Sahoo, S.C., Maity, R. and Pan, S.C. (2019) DBU-Mediated Addition of α-Nitroketones to α-Cyano-Enones and α, β-Unsaturated α-Ketoesters: Synthesis of Dihydrofurans and Conjugated Dienes. ACS Omega, 4, 2792-2803. >https://doi.org/10.1021/acsomega.8b03651
Lv, X., Zhao, W., Chen, Y., Wan, S. and Liu, Y. (2019) Organocatalytic Asymmetric Synthesis of Both Cis-and Trans-Configured Pyrano[2,3-b]Chromenes via Different Dehydration Pathways. Organic Chemistry Frontiers, 6, 1972-1976. >https://doi.org/10.1039/c9qo00366e
Chen, J., Xu, M., Zhang, J., Sun, B., Hu, J., Yu, J., et al. (2020) Modular Chiral Bisoxalamide-Copper-Catalyzed Asymmetric Oxo-Diels-Alder Reaction: Carbonyl Coordination for High Enantio-and Diastereocontrols. ACS Catalysis, 10, 3556-3563. >https://doi.org/10.1021/acscatal.9b05606
Fan, W., Yang, X., Lv, H., Wang, X. and Wang, Z. (2020) Chiral Binaphthyl Box-Copper-Catalyzed Enantioselective Tandem Michael-Ketalization Annulations for Optically Active Aryl and Heteroaryl Fused Bicyclicnonanes. Organic Letters, 22, 3936-3941. >https://doi.org/10.1021/acs.orglett.0c01221
Mo, Y., Zhang, X., Yao, Y., Duan, C., Ye, L., Shi, Z., et al. (2021) Construction of Chiral Isotetronic Acid-Fused Thiochromane via Doubly Annulative Strategy. The Journal of Organic Chemistry, 86, 4448-4456. >https://doi.org/10.1021/acs.joc.0c02878
Tokoroyama, T. (2010) Cheminform Abstract: Discovery of the Michael Reaction. ChemInform, 41. >https://doi.org/10.1002/chin.201027218
Dalko, P.I. (2013) Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, 3 Volume Set. John Wiley&Sons., Hoboken.
Ballini, R., Bosica, G., Fiorini, D., Palmieri, A. and Petrini, M. (2005) Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes: Recent Results. Chemical Reviews, 105, 933-972. >https://doi.org/10.1021/cr040602r
Malerich, J.P., Hagihara, K. and Rawal, V.H. (2008) Chiral Squaramide Derivatives Are Excellent Hydrogen Bond Donor Catalysts. Journal of the American Chemical Society, 130, 14416-14417. >https://doi.org/10.1021/ja805693p
Fofana, M., Dudognon, Y., Bertrand, L., Constantieux, T., Rodriguez, J., Ndiaye, I., et al. (2020) Enantioselective Organocatalyzed Michael Additions of Nitroalkanes to 4-Arylidenedihydrofuran-2,3-Diones and 4-Arylidenepyrrolidine-2,3-Diones. European Journal of Organic Chemistry, 2020, 3486-3490. >https://doi.org/10.1002/ejoc.202000460
Collados, J.F., Solà, R., Harutyunyan, S.R. and Maciá, B. (2016) Catalytic Synthesis of Enantiopure Chiral Alcohols via Addition of Grignard Reagents to Carbonyl Compounds. ACS Catalysis, 6, 1952-1970. >https://doi.org/10.1021/acscatal.5b02832
Wei, A., Nie, J., Zheng, Y. and Ma, J. (2015) Ni-Catalyzed Highly Chemo-, Regio-, and Enantioselective Decarboxylative Aldol Reaction of β,γ-Unsaturated α-Ketoesters with β-Ketoacids. The Journal of Organic Chemistry, 80, 3766-3776. >https://doi.org/10.1021/jo502741z
Li, K., Sun, X., Li, L., Zha, Z., Zhang, F. and Wang, Z. (2020) Stereoselective Copper-Catalyzed Direct Aldol Reaction of β,γ-Unsaturated α-Ketoesters with Coumaran-3-Ones. Chemistry—A European Journal, 27, 581-584. >https://doi.org/10.1002/chem.202003510
Ohshima, T., Morisaki, K., Morimoto, H. and Mashima, K. (2017) Direct Enantioselective Alkynylation of α-Ketoesters and α-Ketiminoesters Catalyzed by [Bis(Oxazoline)Phenyl]Rhodium(III) Complexes. Heterocycles, 95, 637-661.
Deng, R., Han, T., Gao, X., Yang, Y. and Mei, G. (2022) Further Developments of β,γ-Unsaturated α-Ketoesters as Versatile Synthons in Asymmetric Catalysis. iScience, 25, Article 103913. >https://doi.org/10.1016/j.isci.2022.103913
Gan, Z., Cui, D., Zhang, H., Feng, Y., Huang, L., Gui, Y., et al. (2022) Trityl Cation-Catalyzed Hosomi-Sakurai Reaction of Allylsilane with β,γ-Unsaturated α-Ketoester to Form γ,γ-Disubstituted α-Ketoesters. Molecules, 27, Article 4730. >https://doi.org/10.3390/molecules27154730
Rubin, M., Rubina, M. and Gevorgyan, V. (2007) Transition Metal Chemistry of Cyclopropenes and Cyclopropanes. Chemical Reviews, 107, 3117-3179. >https://doi.org/10.1021/cr050988l
Liu, X., Zhang, Y., Li, L., Tan, L., Huang, Y., Ma, A., et al. (2022) Palladium-Catalyzed Nucleophilic Reaction of Alkylidenecyclopropanes with β,γ-Unsaturated α-Ketoesters: Ligand-Controlled Divergent Synthesis. Organic Letters, 24, 6692-6696. >https://doi.org/10.1021/acs.orglett.2c02839
Li, N., Lu, W., Gu, W., Li, K., Li, J., Lu, Y., et al. (2022) Construction of Spirocyclic Oxindole Derivatives by Copper-Catalyzed Enantioselective Michael/Hemiketalization in Aqueous Media. Chemical Communications, 58, 10957-10960. >https://doi.org/10.1039/d2cc04370j
Yu, S., Cai, Q., Li, J., Yu, T., Liang, J., Jiao, Z., et al. (2023) Enantioselective Michael Addition of Malonates to β,γ-Unsaturated α-Ketoesters Catalysed by Cu(II) Complexes Bearing Binaphthyl-Proline Hybrid Ligands. Organic&Biomolecular Chemistry, 21, 1764-1770. >https://doi.org/10.1039/d2ob02305a
Wang, L., Lv, J., Li, S. and Luo, S. (2017) Divergent Coupling of β,γ-Unsaturated α-Ketoesters with Simple Olefins: Vinylation and [2+2] Cycloaddition. Organic Letters, 19, 3366-3369. >https://doi.org/10.1021/acs.orglett.7b01291
Mowbray, C.E., Burt, C., Corbau, R., Perros, M., Tran, I., Stupple, P.A., et al. (2009) Pyrazole NNRTIs 1: Design and Initial Optimisation of a Novel Template. Bioorganic&Medicinal Chemistry Letters, 19, 5599-5602. >https://doi.org/10.1016/j.bmcl.2009.08.039
Thomas, J.B., Giddings, A.M., Wiethe, R.W., Olepu, S., Warner, K.R., Sarret, P., et al. (2014) Identification of 1-({[1-(4-Fluorophenyl)-5-(2-Methoxyphenyl)-1H-Pyrazol-3-yl]Carbonyl}Amino)Cyclohexane Carboxylic Acid as a Selective Nonpeptide Neurotensin Receptor Type 2 Compound. Journal of Medicinal Chemistry, 57, 5318-5332. >https://doi.org/10.1021/jm5003843
Casimiro-Garcia, A., Piotrowski, D.W., Ambler, C., Arhancet, G.B., Banker, M.E., Banks, T., et al. (2014) Identification of (R)-6-(1-(4-Cyano-3-Methylphenyl)-5-Cyclopentyl-4,5-Dihydro-1H-Pyrazol-3-yl)-2-Methoxynicotinic Acid, a Highly Potent and Selective Nonsteroidal Mineralocorticoid Receptor Antagonist. Journal of Medicinal Chemistry, 57, 4273-4288. >https://doi.org/10.1021/jm500206r
Zhang, J., Pan, H. and Liu, T. (2018) Facile Strategy for the Preparation of Pyrazoline Derivatives through Phosphine-Promoted [2+3] Cycloaddition of Dialkyl Azodicarboxylates with β,γ-Unsaturated α-Keto Esters. Synthetic Communications, 48, 1085-1091. >https://doi.org/10.1080/00397911.2018.1435819
Hashimoto, T. and Maruoka, K. (2015) Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Chemical Reviews, 115, 5366-5412. >https://doi.org/10.1021/cr5007182
Chen, Y., Cui, B., Wang, Y., Han, W., Wan, N., Bai, M., et al. (2018) Asymmetric [3+2] Cycloaddition Reaction of Isatin-Derived MBH Carbonates with 3-Methyleneoxindoles: Enantioselective Synthesis of 3,3′-Cyclopentenyldispiroox-indoles Incorporating Two Adjacent Quaternary Spirostereocenters. The Journal of Organic Chemistry, 83, 10465-10475. >https://doi.org/10.1021/acs.joc.8b01506
Chen, Y., Cui, B., Bai, M., Han, W., Wan, N. and Chen, Y. (2019) Synthesis of Chiral Spiro-Cyclopentene/Cyclopen-tadiene-Oxindoles through an Asymmetric [3+2] Cycloaddition of Isatin-Derived MBH Carbonates and β,γ-Unsaturated α-Keto Esters. Tetrahedron, 75, 2971-2979. >https://doi.org/10.1016/j.tet.2019.04.040
Peňaška, T., Palchykov, V., Rakovský, E., Addová, G. and Šebesta, R. (2021) Stereoselective Organocatalytic Construction of Spiro Oxindole Pyrrolidines Using Unsaturated α-Ketoesters and α-Ketoamides. European Journal of Organic Chemistry, 2021, 1693-1703. >https://doi.org/10.1002/ejoc.202100022
Ong, C.W., Lai, M.C., Jan, J.J. and Chang, Y.A. (2002) Pyrrolizine and Indolizine Derivatives from 1,6-Dioxo-2,4-Diene by Inter-and Intramolecular Ring Closure. Heterocycles, 33, 125. >https://doi.org/10.1002/chin.200245125
Yang, R., Chen, Y., Pan, L., Yang, Y., Zheng, Q., Hu, Y., et al. (2018) Design, Synthesis and Structure-Activity Relationship Study of Novel Naphthoindolizine and Indolizinoquinoline-5,12-Dione Derivatives as IDO1 Inhibitors. Bioorganic&Medicinal Chemistry, 26, 4886-4897. >https://doi.org/10.1016/j.bmc.2018.08.028
Zhang, Y., Li, L., Ma, A., Wang, W. and Peng, J. (2022) Base-Promoted [4+2] Annulation of Pyrrole-2-Carbaldehyde Derivatives with β,γ-Unsaturated α-Ketoesters: Syntheses of 5,6-Dihydroindolizines. Organic&Biomolecular Chemistry, 20, 8633-8637. >https://doi.org/10.1039/d2ob01903e
Zhu, Y.I. and Stiller, M.J. (2001) Dapsone and Sulfones in Dermatology: Overview and Update. Journal of the American Academy of Dermatology, 45, 420-434. >https://doi.org/10.1067/mjd.2001.114733
Fowler, J.S., Logan, J., Azzaro, A.J., Fielding, R.M., Zhu, W., Poshusta, A.K., et al. (2009) Reversible Inhibitors of Monoamine Oxidase-A (RIMAs): Robust, Reversible Inhibition of Human Brain MAO-A by Cx157. Neuropsychopharmacology, 35, 623-631. >https://doi.org/10.1038/npp.2009.167
Madhava, G., Ramana, K.V., Sudhana, S.M., Rao, D.S., Kumar, K.H., Lokanatha, V., et al. (2017) Aryl/Heteroaryl Substituted Celecoxib Derivatives as COX-2 Inhibitors: Synthesis, Anti-Inflammatory Activity and Molecular Docking Studies. Medicinal Chemistry, 13, 484-497. >https://doi.org/10.2174/1573406413666170221093740
Tang, X., Tong, L., Liang, H., Liang, J., Zou, Y., Zhang, X., et al. (2018) Facile Synthesis of Substituted Diaryl Sulfones via a [3+3] Benzannulation Strategy. Organic&Biomolecular Chemistry, 16, 3560-3563. >https://doi.org/10.1039/c8ob00662h
Xu, J., Hu, L., Hu, H., Ge, S., Liu, X. and Feng, X. (2019) Enantioselective Vinylogous Michael-Aldol Reaction to Synthesize Spirocyclohexene Pyrazolones in Aqueous Media. Organic Letters, 21, 1632-1636. >https://doi.org/10.1021/acs.orglett.9b00168
Zhang, S., Greenhalgh, M.D., Slawin, A.M.Z. and Smith, A.D. (2020) Tandem Sequential Catalytic Enantioselective Synthesis of Highly-Functionalised Tetrahydroindolizine Derivatives. Chemical Science, 11, 3885-3892. >https://doi.org/10.1039/d0sc00432d
Mukherjee, S., Yang, J.W., Hoffmann, S. and List, B. (2007) Asymmetric Enamine Catalysis. Chemical Reviews, 107, 5471-5569. >https://doi.org/10.1021/cr0684016
Bertelsen, S. and Jørgensen, K.A. (2009) Organocatalysis—After the Gold Rush. Chemical Society Reviews, 38, 2178-2189. >https://doi.org/10.1039/b903816g
Fernando, E.H.N., Cortes Vazquez, J., Davis, J., Luo, W., Nesterov, V.N. and Wang, H. (2021) Can Primary Arylamines Form Enamine? Evidence, α-Enaminone, and [3+3] Cycloaddition Reaction. The Journal of Organic Chemistry, 86, 14617-14626. >https://doi.org/10.1021/acs.joc.1c01462
Pei, C., Wu, L., Lian, Z. and Shi, M. (2012) Dabco-Catalyzed Regioselective Cyclization Reactions of β,γ-Unsaturated α-Ketophosphonates or β,γ-Unsaturated α-Ketoesters with Allenic Esters. Organic&Biomolecular Chemistry, 10, 171-180. >https://doi.org/10.1039/c1ob06507f
Kilroy, T.G., O’Sullivan, T.P. and Guiry, P.J. (2005) Synthesis of Dihydrofurans Substituted in the 2-Position. European Journal of Organic Chemistry, 2005, 4929-4949. >https://doi.org/10.1002/ejoc.200500489
Cheng, Y., Han, Y. and Li, P. (2017) Organocatalytic Enantioselective [1+4] Annulation of Morita-Baylis-Hillman Carbonates with Electron-Deficient Olefins: Access to Chiral 2,3-Dihydrofuran Derivatives. Organic Letters, 19, 4774-4777. >https://doi.org/10.1021/acs.orglett.7b02144
Liu, L. and Zhang, J. (2016) Gold-Catalyzed Transformations of α-Diazocarbonyl Compounds: Selectivity and Diversity. Chemical Society Reviews, 45, 506-516. >https://doi.org/10.1039/c5cs00821b
Zhang, S., Wei, F., Song, C., Jia, J. and Xu, Z. (2014) Recent Advances of the Combination of Au/Acid Catalysis. Chinese Journal of Chemistry, 32, 937-956. >https://doi.org/10.1002/cjoc.201400428
Gong, J., Wan, Q. and Kang, Q. (2018) Gold(I)/Chiral Rh(III) Lewis Acid Relay Catalysis Enables Asymmetric Synthesis of Spiroketals and Spiroaminals. Advanced Synthesis&Catalysis, 360, 4031-4036. >https://doi.org/10.1002/adsc.201800492
Xu, C., Wang, K., Li, D., Lin, L. and Feng, X. (2019) Asymmetric Synthesis of Oxa-bridged Oxazocines through a Catalytic Rh
II/zn
IIRelay [4+3] Cycloaddition Reaction. Angewandte Chemie International Edition, 58, 18438-18442. >https://doi.org/10.1002/anie.201910898
Flematti, G.R., Scaffidi, A., Goddard-Borger, E.D., Heath, C.H., Nelson, D.C., Commander, L.E., et al. (2010) Structure—Activity Relationship of Karrikin Germination Stimulants. Journal of Agricultural and Food Chemistry, 58, 8612-8617. >https://doi.org/10.1021/jf101690a
Khafagy, M.M., Abd El-Wahab, A.H.F., Eid, F.A. and El-Agrody, A.M. (2002) Synthesis of Halogen Derivatives of Benzo[h]Chromene and Benzo[a]Anthracene with Promising Antimicrobial Activities. Il Farmaco, 57, 715-722. >https://doi.org/10.1016/s0014-827x(02)01263-6
Duan, D., Qiu, H., Tang, M., Song, R., Si, W., Yang, D., et al. (2022) HfCl
4-Catalyzed [4+2] Cycloaddition of β,γ-Unsaturated α-Keto Esters with Alkynes. The Journal of Organic Chemistry, 87, 5188-5198. >https://doi.org/10.1021/acs.joc.2c00007