amb Advances in Microbiology 2327-0810 2327-0829 beplay体育官网网页版等您来挑战! 10.12677/amb.2024.132008 amb-89850 Articles 生命科学 微生物脱氮机理与应用研究进展
Research Progress on the Mechanism and Application of Microorganism Denitrification
武金发 1 何梦园 2 江苏省环境监测中心,江苏 南京 宁夏大学生命科学学院,宁夏 银川 26 06 2024 13 02 75 81 5 5 :2024 6 5 :2024 6 6 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 当前我国水体氮污染情况不容乐观,脱氮微生物由于具有环保、高效的脱氮特性在水体脱氮领域拥有极大的开发与应用价值。研究综述了硝化作用、反硝化作用、厌氧氨氧化作用、完全氨氧化作用等微生物脱氮技术,系统地阐释了各脱氮途径的内在机制,全面介绍了各脱氮技术的研究与应用现状,并对微生物脱氮技术综合分析,旨在全面分析脱氮微生物研究与应用的关键问题,为提升微生物脱氮效能提供参考依据和研究思路。
The current situation of nitrogen pollution in water in China is not optimistic. Denitrification microorganisms had great development and application value in the field of water denitrification due to their environmentally friendly and efficient denitrification characteristics. This article provided a review of microbial denitrification technologies such as nitrification, denitrification, anaerobic ammonium oxidation, and complete ammonia oxidation. It systematically explains the inherent mechanisms of each denitrification pathway, comprehensively introduces the research status of each denitrification technology, and comprehensively analyzes the key issues in the research and application of denitrification microorganisms, aiming to provide reference and research ideas for improved microbial denitrification efficiency.
脱氮微生物,硝化作用,反硝化作用,厌氧氨氧化作用,完全氨氧化作用
Denitrification Microorganism
Nitrification Denitrification Anammox Comammox
1. 引言

根据我国生态环境部公布的2022年中国生态环境统计年报显示,我国废水污染物氨氮排放量为82.0万吨,废水中总氮排放量为317.2万吨 [1] ,当前我国水环境氮污染情况不容乐观。针对水体氮污染情况,利用污水处理设施及人工湿地等是解决水体氮污染的主要途径,其处理净化方式主要包括物理法、化学法与生物法 [2] 。传统的物理、化学法往往存在成本高、二次污染等问题,而环保、高效的生物法成为了解决水体氮污染的重要方式 [3] ,其中微生物脱氮技术通过脱氮微生物的硝化作用、反硝化作用,成为了生物净化水体氮污染的关键手段 [2] [4] 。本文对微生物脱氮原理、过程与途径进行综述分析,包括硝化作用、反硝化作用、厌氧氨氧化作用、完全氨氧化作用等脱氮途径,旨在加深对微生物脱氮途径内在机制的理解,进一步阐明脱氮微生物在氮污染水体净化过程中的作用与贡献,从而有利于推动微生物脱氮技术的进一步推广与应用。

2. 硝化作用(Nitrification)

硝化作用是由硝化细菌将氨氮氧化为亚硝态氮或硝态氮的过程,传统具有硝化作用的微生物主要由氨氧化细菌(AOB)、氨氧化古菌(AOA)和亚硝酸盐氧化菌(NOB)等细菌组成 [5]

2.1. 氨氧化细菌(AOB)

AOB是一种需氧自养微生物,首先通过膜结合的氨单加氧酶(AMO)将氨氮催化氧化为羟胺(NH2OH),而第二步NH2OH通过羟胺氧化还原酶(HAO)进一步氧化为亚硝酸盐 [6] 。研究发现AOB细菌主要分类于Proteobacteria,β-Proteobacteria纲,例如Nitrosomonas (包括Nitrosococcusmobilis)、Nitrosospira、Nitrosovibrio和Nitrosolobus等。在微生物脱氮过程中,AOB在硝化作用中发挥着极为重要的作用。Dang等人 [7] 研究发现丹江口水库沉积物中,AOB在净硝化作用和潜在硝化作用中均占主导地位,其贡献分别占52.7~78.6%和59.9~88.1%,细菌特异性氨氧化速率的计算表明AOB的特异性氨氧化速率高于其它氨氧化微生物。Cho等人 [8] 在硝化生物反应器富集了Nitrosomonas aestuarii、Nitrosomonas europaea、Nitrosomonas nitrosa等AOB物种,在处理含有高浓度氨的工业废水中实现了稳定高效的硝化作用。Men等人 [9] 使用烯丙基硫脲(ATU)和1-辛炔(OCT)特异性抑制间歇反应器的AOB菌株,发现反应器中微生物氨氧化作用被完全抑制,证明了AOB是氨氧化微生物的主要群体,其在污水硝化过程中贡献了决定性作用。Srithep等人 [10] 运行硝化反应器NRII发现AOB在NRII中的氨氧化过程中起主要作用。此外,在制药废水处理中AOB还能促进了药物的生物转化,增强了对药物的去除,减轻了药物残留对生态系统带来的潜在风险 [11]

2.2. 氨氧化古菌(AOA)

AOA由于其独特的基因组成具有适应恶劣条件(例如低温、低氧、低含量的电子供体/受体条件等)的能力 [12] ,对污染敏感性较低,在受污染区域的多样性较高 [13] ,在全球氮循环中发挥着极为重要的作用。AOA由于具有合成AMO等酶的基因,从而可以进行氨氧化作用成为了硝化细菌的主要物种之一。自2006年Park等人在污水处理系统中第一次发现了AOA后,大量污水处理系统的AOA被陆续发现 [14] ,例如AOA的主要物种之一Nitrosopumilus maritimus在污水处理厂中得到广泛鉴定并发挥重要脱氮作用 [15] 。Wang等人 [16] 建立序批式膜反应器处理涪陵榨菜废水,在30 g NaCl L1条件下,COD和TN的去除率均高于86%,该系统中AOA丰度均显着高于AOB,且盐度对AOA的抑制作用小于AOB。值得注意的是,由于AOA难以在实验条件下富集与纯化,其更多研究集中在自然环境中的丰度情况与分布规律等方面。研究报道AOA在农田土壤、河流沉积物和海洋中的丰度显著高于AOB,并且在这些生境中AOA是氨氧化的主要驱动因子 [17] 。Li等人 [18] 发现滨海湿地红树林会影响对AOA的群落结构,AOA在离红树林0 m和10 m附近的表层沉积物中具有较高的多样性和丰富性,并在湿地氮去除中发挥重要作用。

2.3. 亚硝酸盐氧化菌(NOB)

亚硝酸盐对真核生物具有毒性,还能抑制微生物的生长,此外高浓度的亚硝酸盐还会对生态环境造成巨大破坏 [19] 。NOB细菌能催化硝化作用的第二步,即利用亚硝酸盐氧化还原酶(NXR)将亚硝酸盐氧化为硝酸盐,为大量微生物和植物提供氮源,NOB在氮循环中具有重要的调节功能,是生物地球化学氮循环的关键参与者 [20] 。当前已知的NOB为4门7属:Nitrobacter、Nitrotoga、Nitrococcus、Nitrospira、Nitrospina、Nitrolancea和CandidatusNitromaritima等,然而NOB被认为是专一性自养生物,其生理功能非常有限,很难发现新的生理功能,导致NOB的相关研究进展落后于其它氮循环微生物,但仍有大量研究显示NOB广泛应用于水体脱氮处理中 [20] 。Yao等人 [21] 对10个大型废水处理厂的微生物群落研究发现,硝化细菌占总细菌的1~10%,NOB的平均百分比为4.02%,同时NOB的活性比AOB高,在硝化群落中占主导地位,从而在污水处理中实现了稳定的硝化作用。Harms等人 [22] 发现城市污水处理厂的NOB (Nitrospira)可能比AOB高出3倍以上。

<xref></xref>3. 反硝化作用(Denitrification)

反硝化作用是指反硝化细菌利用有机碳源将硝酸盐转化为NO、N2O或N2的微生物还原过程 [5] ,主要包括厌氧反硝化作用和好氧反硝化作用。

3.1. 厌氧反硝化菌

厌氧反硝化细菌由于能合成硝酸盐还原酶(NAR),亚硝酸盐还原酶(NIR),一氧化氮还原酶(NOR)或一氧化二氮还原酶(NOS),在厌氧环境中最终能还原硝酸盐并释放N2或N2O。Pseudomonas stutzeri、Pseudomonas aeruginosa、Paracoccusdenitrificans、Ralstoniaeutropha和Rhodobactersphaeroides等大量微生物被研究鉴定为厌氧反硝化细菌 [23] 。此外,一些真菌(例如Fusarium sp.、Tritirachium sp.、Byssochlamys sp.、Paecilomyces sp.等)同样具有厌氧反硝化能力 [24] 。但是值得注意的是,许多反硝化细菌具有自养反硝化能力,Su等人 [25] 研究发现Acinetobacter sp. SZ28能以Mn2+作为电子供体,具有自养厌氧反硝化性能,并且其最终反硝化产物主要为N2。Su等人 [26] 分离出的一种新型自养细菌Pseudomonas sp. SZF15,为依赖性Fe2+氧化厌氧反硝化菌,该菌株在厌氧条件下72 h内能完全还原80.86%的NO3-N和氧化75.53%的Fe2+

3.2. 好氧反硝化菌

好氧反硝化细菌在自然界中分布广泛,例如污泥、废水和废水处理系统、土壤、湖泊、海洋沉积物等均分离并鉴定出了好养反硝化菌。好氧反硝化细菌具有NirK、NirS等反硝化基因,同样可以合成、利用NAR、NIR、NOR、NOS等脱氮酶进行好氧脱氮,将硝酸盐逐步转化形成N2。周质硝酸还原酶(Nap)介导硝酸盐的催化,是好氧反硝化作用所必需的脱氮酶,其编码基因NapA功能基因已被用作生物标志物,用于评估硝酸盐还原功能微生物群落的多样性。高活性的Nap有助于反硝化菌在有氧条件下优先使用硝酸盐接受来自有机物的电子进行反硝化 [27]

自从1984年Robertson等人 [28] 首次纯化分离得到第一株好氧反硝化菌Thiosphaera pantotropha后,其他好氧反硝化细菌(Pseudomonas、Alcaligenes、Paracoccus和Bacillus等)也陆续被发现 [29] 。Jun等人 [30] 分离出了新型好氧反硝化菌Pseudomonas sp. JN5,其硝酸盐去除效率为4.32 mg/L/h,该菌株提高了发酵罐–填料床反应器(fermenter-packed bed reactor)组合系统中硝酸盐去除率。Guo等人 [31] 从活性污泥中分离出了新型好氧反硝化菌Enterobacter cloacae strain HNR,研究表明除去的硝酸盐中有70.8%生成了气体产物N2,并且有20.7%转化为生物质。Wan等人 [29] 分离出的好氧反硝化菌Pseudomonas sp. yy7能利用亚硝酸盐作为氮源进行高效好氧反硝化作用。一些其它好氧反硝化细菌如:气单胞菌属(Aeromonas)、芽孢杆菌属(Bacillus)、肠杆菌属(Enterobacter)等具有耐盐能力强,生长速度快,反硝化速率快等优点 [32] ,在污水脱氮领域具有极大的开发与应用潜力。

<xref></xref>4. 厌氧氨氧化作用(Anammox)

当前许多研究在土壤、地下水、废水处理厂、淡水和海洋沉积物、湖泊、河口、海洋、极地地区、温泉和深海中等厌氧环境中发现了大量厌氧氨氧化细菌,例如Kuenenia、Brocadia、Anammoxoglobus、Jettenia、Scalindua等,据估计每年海洋中去除的氮约50%可归因于厌氧氨氧化活动 [33] 。厌氧氨氧化细菌生长缓慢,是严格厌氧的自养微生物,主要使用铵盐和亚硝酸盐作为分解代谢的底物。在厌氧条件下,厌氧氨氧化细菌将氨氮和亚硝酸盐通过合成肼合酶(HZS)产生肼(N2H4),N2H4是厌氧氨氧化代谢的能量来源,而NO是N2H4的直接前体,接下来厌氧氨氧化菌能将N2H4氧化催化形成N2 [34] 。但由于厌氧氨氧化细菌难以分离纯化,当前研究主要集中在环境中厌氧氨氧化菌的分布与富集方面。Kuypers等人 [35] 利用16S rRNA测序技术发现了黑海中存在高丰度的Planctomycetales厌氧氨氧化菌。Wang等人 [36] 对常规市政污水处理厂调查研究发现厌氧氨氧化菌广泛存在,其丰度为105~107copies g−1MLVSS,在污水处理厂的氮去除贡献率为1.7~7.3%。此外,厌氧氨氧化菌还可以与硫酸盐还原、Fe3+还原相耦合来驱动厌氧氨氧化作用的进行,N、S和Fe在生物地球化学循环中具有复杂的相互作用 [37]

<xref></xref>5. 完全氨氧化作用(Comammox)

传统的微生物硝化作用包括氨氧化作用与亚硝酸盐氧化作用两步过程,但近年来发现的comammoxNitrospira含有AMO基因、HAO基因和NXR基因,能独立完成氨氮到硝酸盐的氧化过程,可以同时进行硝化作用中AOB的氨氧化和NOB的亚硝酸盐氧化两个步骤,打破了人们对传统硝化作用的认知 [20] 。当前报道的comammox菌在系统发育进化上基本均属于NOB的硝基螺菌属(Nitrospira),例如Candidatus Nitrospirainopinata、Candidatus Nitrospiranitrosa、Candidatus Nitrospira nitrificans和Nitrospirae sp. Genome-bin-8等 [38] 。与已知的AOB和NOB相比,comammox Nitrospira的完整基因组包含用于编码AMO和HAO的全套基因,以及用于编码NXR的基因,具有完全硝化的遗传潜力 [39] 。在好氧、厌氧等不同环境中,comammox菌均能自养生长,并能以氨氮和亚硝酸盐为底物氧化生成硝酸盐 [39] [40] 。有研究发现温度和盐度是影响comammox群落的主要因素,comammox细菌可以适应极高盐度的环境,例如comammox细菌在我国东南部红树林生态系统中具有高度多样性,对红树林氮循环途径存在重要影响 [41] 。此外,在投加氮肥的农业土壤中也发现了comammox Nitrospira在土壤的硝化过程中发挥了非常重要的作用 [42] 。Comammox菌广泛分布于各种环境中,数量丰富,对于氮循环硝化作用的研究具有重要意义,其应用前景非常广阔。

6. 结论与展望

由于受工农业废水与生活污水排放等因素影响导致当前我国水环境氮污染情况严峻,水体氮污染物含量超标现象时常发生,而微生物技术由于能够高效、环保地实现水体脱氮,已成为当前水体脱氮研究领域的重点与难点。但由于脱氮功能微生物在生理生化、分子机理与工程应用等方面研究尚未完善、成熟,同时受复杂环境条件的影响,当前脱氮微生物应用于污水脱氮中尚存在诸多问题,亟待深入研究解决:

(1) 当前污水微生物脱氮的主流技术仍是传统硝化作用、反硝化作用,而硝化细菌主要为自养细菌,在实际污水中难以竞争过其它异养菌,导致硝化作用往往成为微生物脱氮的限速步骤。针对这一问题,未来研究应深入探索发现新型具有硝化功能的微生物,以及对当前的硝化细菌进行基因编辑和工程菌改造,强化硝化细菌的脱氮能力。

(2) 大量研究均分离、纯化了许多高效脱氮功能细菌,但许多脱氮细菌的研究仅停留在生理生化与分子机理方面,而它们在实际污水处理与工程应用中的研究较少,难以发挥这些高效脱氮细菌的实际价值。因此,需利用当前已获得的脱氮细菌,结合实际环境条件,深入研究探索脱氮细菌在实际应用中的可行性,实现脱氮细菌从模拟研究到实际应用的成果转化。

(3) 单一脱氮微生物在实际污水处理中难以发挥决定性作用,污水的微生物脱氮处理主要依靠脱氮菌群来实现。因此,耦合培养当前纯化的脱氮微生物,构建高效复合脱氮菌群;或驯化培养实际环境中的脱氮菌群,获得能广泛应用于污水脱氮处理中的高效脱氮菌群,是未来微生物脱氮研究与应用的重要方向。与此同时,结合微生物群体感应作用、固定化技术等,提高菌群的生物膜形成能力,增强脱氮菌群对环境胁迫的抗逆性,促进微生物脱氮技术的推广与应用。

(4) 由于在极端或恶劣的环境条件中脱氮微生物的生长会受到抑制,导致脱氮效率降低,所以未来需进一步寻找发现新型抗逆性强的脱氮微生物,加强对脱氮基因、脱氮酶的研究,完善细菌的脱氮通路,解决脱氮效率低的瓶颈。

NOTES

*通讯作者。

References 中华人民共和国环境保护部. 2022年全国生态环境统计公报[R]. 2023. Christensen, M.H. and Harremoës, P. (2013) Biological Denitrification of Sewage: A Literature Review. In: Jenkins, S.H., Ed., Proceedings of the Conference on Nitrogen as a Water Pollutant, Pergamon, 509-555. >https://doi.org/10.1016/B978-1-4832-1344-6.50039-3 Liu, N., Sun, Z., Zhang, H., et al. (2023) Emerging High-Ammonia-Nitrogen Wastewater Remediation by Biological Treatment and Photocatalysis Techniques. Science of the Total Environment, 875, Article 162603. >https://doi.org/10.1016/j.scitotenv.2023.162603 Ashok, V. and Hait, S. (2015) Remediation of Nitrate-Contaminated Water by Solid-Phase Denitrification Process—A Review. Environmental Science and Pollution Research, 22, 8075-8093. >https://doi.org/10.1007/s11356-015-4334-9 Fu, G., Wu, J., Han, J., Zhao, L., Chan, G. and Leong, K. (2020) Effects of Substrate Type on Denitrification Efficiency and Microbial Community Structure in Constructed Wetlands. Bioresource Technology, 307, Article 123222. >https://doi.org/10.1016/j.biortech.2020.123222 Sinha, B. and Annachhatre, A.P. (2006) Partial Nitrification—Operational Parameters and Microorganisms Involved. Reviews in Environmental Science and Bio/Technology, 6, 285-313. >https://doi.org/10.1007/s11157-006-9116-x Dang, C., Liu, W., Lin, Y., Zheng, M., Jiang, H., Chen, Q., et al. (2018) Dominant Role of Ammonia-Oxidizing Bacteria in Nitrification Due to Ammonia Accumulation in Sediments of Danjiangkou Reservoir, China. Applied Microbiology and Biotechnology, 102, 3399-3410. >https://doi.org/10.1007/s00253-018-8865-0 Cho, K., Shin, S.G., Lee, J., et al. (2016) Nitrification Resilience and Community Dynamics of Ammonia-Oxidizing Bacteria with Respect to Ammonia Loading Shock in a Nitrification Reactor Treating Steel Wastewater. Journal of Bioscience and Bio-Engineering, 122, 196-202. >https://doi.org/10.1016/j.jbiosc.2016.01.009 Men, Y., Achermann, S., Helbling, D.E., et al. (2017) Relative Contribution of Ammonia Oxidizing Bacteria and Other Members of Nitrifying Activated Sludge Communities to Micropollutant Biotransformation. Water Research, 109, 217-226. >https://doi.org/10.1016/j.watres.2016.11.048 Srithep, P., Pornkulwat, P. and Limpiyakorn, T. (2018) Contribution of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria to Ammonia Oxidation in Two Nitrifying Reactors. Environmental Science and Pollution Research, 25, 8676-8687. >https://doi.org/10.1007/s11356-017-1155-z Xu, Y., Yuan, Z. and Ni, B. (2016) Biotransformation of Pharmaceuticals by Ammonia Oxidizing Bacteria in Wastewater Treatment Processes. Science of the Total Environment, 566-567, 796-805. >https://doi.org/10.1016/j.scitotenv.2016.05.118 Ren, Y., Hao Ngo, H., Guo, W., Wang, D., Peng, L., Ni, B., et al. (2020) New Perspectives on Microbial Communities and Biological Nitrogen Removal Processes in Wastewater Treatment Systems. Bioresource Technology, 297, Article 122491. >https://doi.org/10.1016/j.biortech.2019.122491 Cao, H., Li, M., Hong, Y., et al. (2011) Diversity and Abundance of Ammonia-Oxidizing Archaea and Bacteria in Polluted Man-Grove Sediment. Systematic and Applied Microbiology, 34, 513-523. >https://doi.org/10.1016/j.syapm.2010.11.023 Park, H., Wells, G.F., Bae, H., Criddle, C.S. and Francis, C.A. (2006) Occurrence of Ammonia-Oxidizing Archaea in Wastewater Treatment Plant Bioreactors. Applied and Environmental Microbiology, 72, 5643-5647. >https://doi.org/10.1128/aem.00402-06 Ren, Y., Ngo, H.H., Guo, W., et al. (2019) Linking the Nitrous Oxide Production and Mitigation with the Microbial Community in Wastewater Treatment: A Review. Bioresource Technology Reports, 7, Article 100191. >https://doi.org/10.1016/j.biteb.2019.100191 Wang, J., Gong, B., Huang, W., Wang, Y. and Zhou, J. (2017) Bacterial Community Structure in Simultaneous Nitrification, Denitrification and Organic Matter Removal Process Treating Saline Mustard Tuber Wastewater as Revealed by 16S rRNA Sequencing. Bioresource Technology, 228, 31-38. >https://doi.org/10.1016/j.biortech.2016.12.071 You, J., Das, A., Dolan, E.M. and Hu, Z. (2009) Ammonia-Oxidizing Archaea Involved in Nitrogen Removal. Water Research, 43, 1801-1809. >https://doi.org/10.1016/j.watres.2009.01.016 Li, M., Cao, H., Hong, Y. and Gu, J. (2010) Spatial Distribution and Abundances of Ammonia-Oxidizing Archaea (AOA) and Ammonia-Oxidizing Bacteria (AOB) in Mangrove Sediments. Applied Microbiology and Biotechnology, 89, 1243-1254. >https://doi.org/10.1007/s00253-010-2929-0 Yang, S., Luo, J., Huang, Y., et al. (2022) Effect of Sub-Lethal Ammonia and Nitrite Stress on Autophagy and Apoptosis in Hepatopancreas of Pacific Whiteleg Shrimp Litopenaeus vannamei. Fish&Shellfish Immunology, 130, 72-78. >https://doi.org/10.1016/j.fsi.2022.08.069 Daims, H., Lücker, S. and Wagner, M. (2016) A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. Trends in Microbiology, 24, 699-712. >https://doi.org/10.1016/j.tim.2016.05.004 Yao, Q. and Peng, D. (2017) Nitrite Oxidizing Bacteria (NOB) Dominating in Nitrifying Community in Full-Scale Biological Nutrient Removal Wastewater Treatment Plants. AMB Express, 7, Article No. 25. >https://doi.org/10.1186/s13568-017-0328-y Harms, G., Layton, A.C., Dionisi, H.M., Gregory, I.R., Garrett, V.M., Hawkins, S.A., et al. (2002) Real-Time PCR Quantification of Nitrifying Bacteria in a Municipal Wastewater Treatment Plant. Environmental Science&Technology, 37, 343-351. >https://doi.org/10.1021/es0257164 Zumft, W.G. (1997) Cell Biology and Molecular Basis of Denitrification. Microbiology and Molecular Biology Reviews, 61, 533-616. >https://doi.org/10.1128/.61.4.533-616.1997 Cathrine, S.J. and Raghukumar, C. (2009) Anaerobic Denitrification in Fungi from the Coastal Marine Sediments off Goa, India. Mycological Research, 113, 100-109. >https://doi.org/10.1016/j.mycres.2008.08.009 Su, J.F., Zheng, S.C., Huang, T.L., et al. (2015) Characterization of the Anaerobic Denitrification Bacterium Acinetobacter sp. SZ28 and Its Application for Groundwater Treatment. Bioresource Technology, 192, 654-659. >https://doi.org/10.1016/j.biortech.2015.06.020 Su, J.F., Shao, S.C., Huang, T.L., et al. (2015) Anaerobic Nitrate-Dependent Iron (II) Oxidation by a Novel Autotrophic Bacterium, Pseudomonas sp. SZF15. Journal of Environmental Chemical Engineering, 3, 2187-2193. >https://doi.org/10.1016/j.jece.2015.07.030 Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H., Zhou, J., et al. (2015) Aerobic Denitrification: A Review of Important Advances of the Last 30 Years. Biotechnology and Bioprocess Engineering, 20, 643-651. >https://doi.org/10.1007/s12257-015-0009-0 Robertson, L.A. and Kuenen, J.G. (1984) Aerobic Denitrification: A Controversy Revived. Archives of Microbiology, 139, 351-354. >https://doi.org/10.1007/bf00408378 Wan, C., Yang, X., Lee, D., et al. (2011) Aerobic Denitrification by Novel Isolated Strain Using NO 2-N as Nitrogen source. Bioresource Technology, 102, 7244-7248. >https://doi.org/10.1016/j.biortech.2011.04.101 Jun, K., Abraham, A., Choi, O., et al. (2019) Aerobic Denitrification by a Novel Pseudomonas sp. JN5 in Different Bioreactor Systems. Water-Energy Nexus, 2, 37-45. >https://doi.org/10.1016/j.wen.2020.02.001 Guo, L., Zhao, B., An, Q. and Tian, M. (2015) Characteristics of a Novel Aerobic Denitrifying Bacterium, Enterobacter cloacae Strain HNR. Applied Biochemistry and Biotechnology, 178, 947-959. >https://doi.org/10.1007/s12010-015-1920-8 Wang, Z., Gao, M., She, Z., Wang, S., Jin, C., Zhao, Y., et al. (2015) Effects of Salinity on Performance, Extracellular Polymeric Substances and Microbial Community of an Aerobic Granular Sequencing Batch Reactor. Separation and Purification Technology, 144, 223-231. >https://doi.org/10.1016/j.seppur.2015.02.042 Kartal, B., de Almeida, N.M., Maalcke, W.J., Op den Camp, H.J.M., Jetten, M.S.M. and Keltjens, J.T. (2013) How to Make a Living from Anaerobic Ammonium Oxidation. FEMS Microbiology Reviews, 37, 428-461. >https://doi.org/10.1111/1574-6976.12014 Kartal, B., Maalcke, W.J., de Almeida, N.M., et al. (2011) Molecular Mechanism of Anaerobic Ammonium Oxidation. Nature, 479, 127-130. >https://doi.org/10.1038/nature10453 Kuypers, M.M.M., Sliekers, A.O., Lavik, G., et al. (2003) Anaerobic Ammonium Oxidation by Anammox Bacteria in the Black Sea. Nature, 422, 608-611. >https://doi.org/10.1038/nature01472 Wang, S., Peng, Y., Ma, B., et al. (2015) Anaerobic Ammonium Oxidation in Traditional Municipal Wastewater Treatment Plants with Low-Strength Ammonium Loading: Widespread but Overlooked. Water Research, 84, 66-75. >https://doi.org/10.1016/j.watres.2015.07.005 Rios-Del Toro, E.E., Valenzuela, E.I., López-Lozano, N.E., et al. (2018) Anaerobic Ammonium Oxidation Linked to Sulfate and Ferric Iron Reduction Fuels Nitrogen Loss in Marine Sediments. Biodegradation, 29, 429-442. >https://doi.org/10.1007/s10532-018-9839-8 Wang, Y., Ma, L., Mao, Y., Jiang, X., Xia, Y., Yu, K., et al. (2017) Comammox in Drinking Water Systems. Water Research, 116, 332-341. >https://doi.org/10.1016/j.watres.2017.03.042 Daims, H., Lebedeva, E.V., Pjevac, P., et al. (2015) Complete Nitrification by Nitrospira Bacteria. Nature, 528, 504-509. >https://doi.org/10.1038/nature16461 Van Kessel, M.A.H.J., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den Camp, H.J.M., Kartal, B., et al. (2015) Complete Nitrification by a Single Microorganism. Nature, 528, 555-559. >https://doi.org/10.1038/nature16459 Liu, Z., Zhang, C., Wei, Q., Zhang, S., Quan, Z. and Li, M. (2020) Temperature and Salinity Drive Comammox Community Composition in Mangrove Ecosystems across Southeastern China. Science of the Total Environment, 742, Article 140456. >https://doi.org/10.1016/j.scitotenv.2020.140456 Li, C., Hu, H., Chen, Q., et al. (2019) Comammox Nitrospira Play an Active Role in Nitrification of Agricultural Soils Amended with Nitrogen Fertilizers. Soil Biology and Biochemistry, 138, Article 107609. >https://doi.org/10.1016/j.soilbio.2019.107609
Baidu
map