References
Food and Agriculture Organizationof the United Nations (2022) The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation, Rome.
Shitu, A., Zhu, S., Qi, W., Tadda, M.A., Liu, D. and Ye, Z. (2020) Performance of Novel Sponge Biocarrier in MBBR Treating Recirculating Aquaculture Systems Wastewater: Microbial Community and Kinetic Study. Journal of Environmental Management, 275, Article 111264. >https://doi.org/10.1016/j.jenvman.2020.111264
韩炳泉, 郭志涛, 蒋磊. 移动床生物膜变形工艺原位处理水产养殖废水的研究[J]. 安徽农业科学, 2011, 39(12): 7270-7271+7277.
陈相林. 人工湿地对水产养殖废水中氮磷的去除效能分析[J]. 江西水产科技, 2020(2): 37-38.
王晓曈, 杨宏, 苏杨, 等. 包埋厌氧氨氧化菌的环境因子影响特性及群落结构分析[J]. 环境科学, 2020, 41(2): 839-848.
贾倩, 胡亚伟, 靳晓辉. 一体化生活污水处理设备A2/O-MBBR新工艺处理效果分析[J]. 人民黄河, 2022, 44(S2): 136-138.
Gapes, D.J. and Keller, J. (2009) Impact of Oxygen Mass Transfer on Nitrification Reactions in Suspended Carrier Reactor Biofilms. Process Biochemistry, 44, 43-53. >https://doi.org/10.1016/j.procbio.2008.09.004
Herrero, M. and Stuckey, D.C. (2015) Bioaugmentation and Its Application in Wastewater Treatment: A Review. Chemosphere, 140, 119-128. >https://doi.org/10.1016/j.chemosphere.2014.10.033
张玮. HN-AD复合菌强化MBBR去除水产养殖废水中氮素的效果研究[D]: [硕士学位论文]. 重庆: 重庆工商大学, 2022.
国家环境保护总局. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002: 227-281.
Torno, J., Naas, C., Schroeder, J.P. and Schulz, C. (2018) Impact of Hydraulic Retention Time, Backflushing Intervals, and C/N Ratio on the Sid-Reactor Denitrification Performance in Marine RAS. Aquaculture, 496, 112-122. >https://doi.org/10.1016/j.aquaculture.2018.07.004
Jiang, Q., Ngo, H.H., Nghiem, L.D., Hai, F.I., Price, W.E., Zhang, J., et al. (2018) Effect of Hydraulic Retention Time on the Performance of a Hybrid Moving Bed Biofilm Reactor-Membrane Bioreactor System for Micropollutants Removal from Municipal Wastewater. Bioresource Technology, 247, 1228-1232. >https://doi.org/10.1016/j.biortech.2017.09.114
Luján-Facundo, M.J., Fernández-Navarro, J., Alonso-Molina, J.L., Amorós-Muñoz, I., Moreno, Y., Mendoza-Roca, J.A., et al. (2018) The Role of Salinity on the Changes of the Biomass Characteristics and on the Performance of an OMBR Treating Tannery Wastewater. Water Research, 142, 129-137. >https://doi.org/10.1016/j.watres.2018.05.046
Yuan, Y., Yang, B., Wang, H., Lai, X., Li, F., Salam, M.M.A., et al. (2020) The Simultaneous Antibiotics and Nitrogen Removal in Vertical Flow Constructed Wetlands: Effects of Substrates and Responses of Microbial Functions. Bioresource Technology, 310, Article 123419. >https://doi.org/10.1016/j.biortech.2020.123419
Karanasios, K.A., Vasiliadou, I.A., Pavlou, S. and Vayenas, D.V. (2010) Hydrogenotrophic Denitrification of Potable Water: A Review. Journal of Hazardous Materials, 180, 20-37. >https://doi.org/10.1016/j.jhazmat.2010.04.090
Lee, I., Parameswaran, P. and Rittmann, B.E. (2011) Effects of Solids Retention Time on Methanogenesis in Anaerobic Digestion of Thickened Mixed Sludge. Bioresource Technology, 102, 10266-10272. >https://doi.org/10.1016/j.biortech.2011.08.079
Hamdan, A.M., Abd-El-Mageed, H. and Ghanem, N. (2021) Biological Treatment of Hazardous Heavy Metals by Streptomyces Rochei ANH for Sustainable Water Management in Agriculture. Scientific Reports, 11, Article No. 9314. >https://doi.org/10.1038/s41598-021-88843-y
王加龙, 刘驰, 雷丽, 李香真, 姚敏杰. 非共生固氮菌及其固氮作用[J]. 微生物学报, 2022, 62(8): 2861-2878.
Zhang, J., Wu, P., Hao, B. and Yu, Z. (2011) Heterotrophic Nitrification and Aerobic Denitrification by the Bacterium Pseudomonas Stutzeri Yzn-001. Bioresource Technology, 102, 9866-9869. >https://doi.org/10.1016/j.biortech.2011.07.118