El Sharkasy等人在2022年发表的这篇研究文章,描述了同步荧光光度法的开发和验证,用于同时测定药物制剂和生物液体(如人血浆)中的药物法维匹拉韦(FPV)和羟基氯喹(HCQ)。所提出的同步荧光分光光度法似乎是一种简单、灵敏且环保的方法,用于同时定量分析药物制剂和生物液体中的法匹拉韦和羟基氯喹。其优点包括灵敏度高、线性好、能够同时分析两种药物而无需任何预分离步骤。然而,其应用可能仅限于这些特定药物,并且生物样品中其他荧光化合物的潜在干扰需要进一步研究
[17]
。
References
Ferraz, L.R.M., Santos, F.L.A., Ferreira, P.A., et al. (2014) Quality by Design in the Development and Validation of Analytical Method by Ultraviolet-Visible Spectrophotometry for Quantification of Hydroxychloroquine Sulfate. International Journal of Pharmaceutical Sciences and Research, 5, 4666.
Carr, R.E., Henkind, P., Rothfield, N. and Siegel, I.M. (1968) Ocular Toxicity of Antimalarial Drugs. American Journal of Ophthalmology, 66, 738-744. >https://doi.org/10.1016/0002-9394(68)91300-7
Xu, C., Zhu, L., Chan, T., Lu, X., Shen, W., Madigan, M.C., et al. (2016) Chloroquine and Hydroxychloroquine Are Novel Inhibitors of Human Organic Anion Transporting Polypeptide 1A2. Journal of Pharmaceutical Sciences, 105, 884-890. >https://doi.org/10.1002/jps.24663
Dongre, V.G., Ghugare, P.D., Karmuse, P., Singh, D., Jadhav, A. and Kumar, A. (2009) Identification and Characterization of Process Related Impurities in Chloroquine and Hydroxychloroquine by LC/IT/MS, LC/TOF/MS and NMR. Journal of Pharmaceutical and Biomedical Analysis, 49, 873-879. >https://doi.org/10.1016/j.jpba.2009.01.013
Koranda, F.C. (1981) Antimalarials. Journal of the American Academy of Dermatology, 4, 650-655. >https://doi.org/10.1016/s0190-9622(81)70065-3
Mallhi, T.H., Ahmad, A., Butt, M.H., et al. (2020) Chloroquine and Hydroxychloroquine in COVID-19: Practice Implications for Healthcare Professionals. Journal of College of Physicians and Surgeons Pakistan, 30, 124-128.
Akarsu, S. (2020) Hydroxychloroquine: From Pharmacological Profile to Neglected Adverse Reactions. The Journal of Basic and Clinical Health Sciences, 4, 205-211. >https://doi.org/10.30621/jbachs.2020.1165
Shearer, R.V. and Dubois, E.L. (1967) Ocular Changes Induced by Long-Term Hydroxychloroquine (Plaquenil) Therapy. American Journal of Ophthalmology, 64, 245-252. >https://doi.org/10.1016/0002-9394(67)92518-4
Yusuf, I.H., Sharma, S., Luqmani, R. and Downes, S.M. (2017) Hydroxychloroquine Retinopathy. Eye, 31, 828-845. >https://doi.org/10.1038/eye.2016.298
Marmor, M.F., Kellner, U., Lai, T.Y.Y., Melles, R.B. and Mieler, W.F. (2016) Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision). Ophthalmology, 123, 1386-1394. >https://doi.o.rg/10.1016/j.ophtha.2016.01.058
Chen, Z., Hu, J., Zhang, Z., et al. (2020) Efficacy of Hydroxychloroquine in Patients with COVID-19: Results of a Randomized Clinical Trial.
Elavarasi, A., Prasad, M., Seth, T., Sahoo, R.K., Madan, K., Nischal, N., et al. (2020) Chloroquine and Hydroxychloroquine for the Treatment of COVID-19: A Systematic Review and Meta-Analysis. Journal of General Internal Medicine, 35, 3308-3314. >https://doi.org/10.1007/s11606-020-06146-w
Singh, A.K., Singh, A., Singh, R. and Misra, A. (2020) Hydroxychloroquine in Patients with COVID-19: A Systematic Review and Meta-Analysis. Diabetes&Metabolic Syndrome: Clinical Research&Reviews, 14, 589-596. >https://doi.org/10.1016/j.dsx.2020.05.017
Farias, D.F., Souza, T., Souza, J.A.C.R., Vieira, L.R., Muniz, M.S., Martins, R.X., et al. (2020) COVID‐19 Therapies in Brazil: Should We Be Concerned with the Impacts on Aquatic Wildlife? Environmental Toxicology and Chemistry, 39, 2348-2350. >https://doi.org/10.1002/etc.4888
Ben Ali, M., Hedfi, A., Almalki, M., Karachle, P.K. and Boufahja, F. (2021) Toxicity of Hydroxychloroquine, a Potential Treatment for COVID-19, on Free-Living Marine Nematodes. Marine Pollution Bulletin, 167, Article ID: 112361. >https://doi.org/10.1016/j.marpolbul.2021.112361
Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C.U. and Mohan, D. (2019) Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chemical Reviews, 119, 3510-3673. >https://doi.org/10.1021/acs.chemrev.8b00299
El Sharkasy, M.E., Tolba, M.M., Belal, F., Walash, M. and Aboshabana, R. (2022) Quantitative Analysis of Favipiravir and Hydroxychloroquine as FDA-Approved Drugs for Treatment of COVID‐19 Using Synchronous Spectrofluorimetry: Application to Pharmaceutical Formulations and Biological Fluids. Luminescence, 37, 953-964. >https://doi.org/10.1002/bio.4240
Bodur, S., Erarpat, S., Günkara, Ö.T. and Bakırdere, S. (2021) Accurate and Sensitive Determination of Hydroxychloroquine Sulfate Used on COVID-19 Patients in Human Urine, Serum and Saliva Samples by GC-MS. Journal of Pharmaceutical Analysis, 11, 278-283. >https://doi.org/10.1016/j.jpha.2021.01.006
Xiong, X., Wang, K., Tang, T., Fang, J. and Chen, Y. (2021) Development of a Chiral HPLC Method for the Separation and Quantification of Hydroxychloroquine Enantiomers. Scientific Reports, 11, Article No. 8017. >https://doi.org/10.1038/s41598-021-87511-5
Qu, Y., Noe, G., Breaud, A.R., Vidal, M., Clarke, W.A., Zahr, N., et al. (2015) Development and Validation of a Clinical HPLC Method for the Quantification of Hydroxychloroquine and Its Metabolites in Whole Blood. Future Science OA, 1, FSO26. >https://doi.org/10.4155/fso.15.24
Carvalho, M.S., Rocha, R.G., de Faria, L.V., Richter, E.M., Dantas, L.M.F., da Silva, I.S., et al. (2022) Additively Manufactured Electrodes for the Electrochemical Detection of Hydroxychloroquine. Talanta, 250, Article ID: 123727. >https://doi.org/10.1016/j.talanta.2022.123727
Singh, A., Sharma, P.K., Gupta, R., et al. (2016) Development and Validation of UV-Spectrophotometric Method for the Estimation of Hydroxychloroquine Sulphate.
Ünal Taş, D. (2022) A New Method for Hydroxychloroquine Detection. Middle East Technical University.
Doğan, K., Ünal Taş, D., Persil Çetinkol, Ö. and Forough, M. (2024) Fluorometric and Colorimetric Platforms for Rapid and Sensitive Hydroxychloroquine Detection in Aqueous Samples. Talanta, 270, Article ID: 125523. >https://doi.org/10.1016/j.talanta.2023.125523