Figure 1. Two-dimensional plot of system chaotic attractor--图1. 系统混沌吸引子的二维图--Figure 2. Three-dimensional plot of system chaotic attractor--图2. 系统混沌吸引子的三维图--3. 网络化Rössler模型
Table 1. Comparison of theoretical critical coupling strengths and average degrees across different networksTable 1. Comparison of theoretical critical coupling strengths and average degrees across different networks 表1. 不同网络下,理论临界耦合强度,平均度比较图
References
Pecora, L.M. and Carroll, T.L. (1991) Driving Systems with Chaotic Signals. Physical Review A, 44, 2374-2383. >https://doi.org/10.1103/physreva.44.2374
Pecora, L.M. and Carroll, T.L. (1990) Synchronization in Chaotic Systems. Physical Review Letters, 64, 821-824. >https://doi.org/10.1103/physrevlett.64.821
Barahona, M. and Pecora, L.M. (2002) Synchronization in Small-World Systems. Physical Review Letters, 89, Article 054101. >https://doi.org/10.1103/physrevlett.89.054101
Masuda, N. and Aihara, K. (2004) Global and Local Synchrony of Coupled Neurons in Small-World Networks. Biological Cybernetics, 90, 302-309. >https://doi.org/10.1007/s00422-004-0471-9
Li, X. and Chen, G. (2003) Synchronization and Desynchronization of Complex Dynamical Networks: An Engineering Viewpoint. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50, 1381-1390. >https://doi.org/10.1109/tcsi.2003.818611
Belykh, I., de Lange, E. and Hasler, M. (2005) Synchronization of Bursting Neurons: What Matters in the Network Topology. Physical Review Letters, 94, Article 188101. >https://doi.org/10.1103/physrevlett.94.188101
Ditto, W. (2002) Keeping in Sync. Nature, 415, 736-737. >https://doi.org/10.1038/415736b
Wiesenfeld, K., Colet, P. and Strogatz, S. (1998) Frequency Locking in Josephson Arrays: Connection with the Kuramoto Model. Physical Review E, 57, 1563-1569. >https://doi.org/10.1103/physreve.57.1563
Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., et al. (2005) Chaos-Based Communications at High Bit Rates Using Commercial Fibre-Optic Links. Nature, 438, 343-346. >https://doi.org/10.1038/nature04275
Ermentrout, B. (1991) An Adaptive Model for Synchrony in the Firefly Pteroptyx malaccae. Journal of Mathematical Biology, 29, 571-585. >https://doi.org/10.1007/bf00164052
Vinogradova, T.M., Lyashkov, A.E., Zhu, W., Ruknudin, A.M., Sirenko, S., Yang, D., et al. (2006) High Basal Protein Kinase A—Dependent Phosphorylation Drives Rhythmic Internal Ca
2+Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells. Circulation Research, 98, 505-514. >https://doi.org/10.1161/01.res.0000204575.94040.d1
Stam, C.J. (2005) Nonlinear Dynamical Analysis of EEG and MEG: Review of an Emerging Field. Clinical Neurophysiology, 116, 2266-2301. >https://doi.org/10.1016/j.clinph.2005.06.011
MacLeod, K. and Laurent, G. (1996) Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies. Science, 274, 976-979. >https://doi.org/10.1126/science.274.5289.976
Prakash, M. and Gershenfeld, N. (2007) Microfluidic Bubble Logic. Science, 315, 832-835. >https://doi.org/10.1126/science.1136907
Pecora, L.M. and Carroll, T.L. (1998) Master Stability Functions for Synchronized Coupled Systems. Physical Review Letters, 80, 2109-2112. >https://doi.org/10.1103/physrevlett.80.2109
Timme, M., Wolf, F. and Geisel, T. (2004) Topological Speed Limits to Network Synchronization. Physical Review Letters, 92, Article 074101. >https://doi.org/10.1103/physrevlett.92.074101
Yan, G., Chen, G., Lü, J. and Fu, Z. (2009) Synchronization Performance of Complex Oscillator Networks. Physical Review E, 80, Article 056116. >https://doi.org/10.1103/physreve.80.056116
舒永录, 张付臣, 杨洪亮. 一个新的多维超混沌系统及其性质研究[J]. 四川大学学报(自然科学版), 2011, 48(4): 857-864.
行鸿彦, 冒海微, 徐伟. 基于全局指数吸引集的统一变形混沌系统同步[J]. 信息与控制, 2014, 43(4): 385-391.
刘莹, 王贺元, 陈荟颖. 强迫布鲁塞尔振子动力学行为和全局指数同步的数值仿真[J]. 动力学与控制学报, 2017, 15(5): 423-429.
舒睿, 陈伟, 肖井华. 多个耦合星型网络的同步优化[J]. 物理学报, 2019, 68(18): 65-74.
陈松, 张付臣, 肖敏. 一个复杂混沌系统的分析与同步控制[J]. 系统科学与数学, 2024, 44(5): 1311-1323.