同时,作者采用交替方向乘子法(Alternating direction multiplier method, ADMM)代替标准的次梯度方法。由于ADMM的模块化结构允许通过简单地修改正则相关的子步骤来嵌入任何先验(显式或隐式)信息,所以ADMM框架更加灵活。同时,带有显示先验项的数学模型在数字图像处理中具有多重优势。首先,它有助于减少图像中的噪声和模糊,通过约束恢复过程,使结果更接近真实场景。其次,显示先验项提高了图像恢复的质量,突出边缘和细节,从而增强了图像的可视化效果。此外,引入先验信息可以改善图像分割的准确性和稳定性,加速算法的收敛速度,并节省计算时间。
References
阮秋琦. 数字图像处理学[M]. 北京: 电子工业出版社, 2001.
蒋刚毅, 黄大江, 王旭, 等. 图像质量评价方法研究进展[J]. 电子与信息学报, 2010, 32(1): 219-226.
闫友彪, 陈元琰. 机器学习的主要策略综述[J]. 计算机应用研究, 2004, 21(7): 4-10, 13.
Martinez,
A.M.
and
Kak,
A.C.
(2001)
PCA
versus
LDA.
IEEE
Transactions
on
Pattern
Analysis
and
Machine
Intelligence,
23,
228-233.
>https://doi.org/10.1109/34.908974
Candès,
E.J.,
Li,
X.,
Ma,
Y.
and
Wright,
J.
(2011)
Robust
Principal
Component
Analysis?
Journal
of
the
ACM,
58,
1-37.
>https://doi.org/10.1145/1970392.1970395
Lin, Z., Chen, M. and Ma, Y. (2010) The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. arXiv: 1009.5055.
Chen, M., Ganesh, A., Lin, Z., et al. (2009) Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix. Journal of the Marine Biological Association of the UK, 56, 707-722.
梁栋, 梁昭, 鲍文霞, 等. 基于非局部正则化稀疏表示的图像去噪算法[J]. 系统工程与电子计术, 2013, 35(5): 1104-1109.4
史加荣, 郑秀云, 魏宗田, 等. 低秩矩阵恢复算法综述[J]. 计算机应用研究, 2013, 30(6): 1601-1605.
Gu,
S.,
Zhang,
L.,
Zuo,
W.
and
Feng,
X.
(2014).
Weighted
Nuclear
Norm
Minimization
with
Application
to
Image
Denoising.
2014
IEEE
Conference
on
Computer
Vision
and
Pattern
Recognition,
Columbus,
23-28 June 2014, 2862-2869.
>https://doi.org/10.1109/cvpr.2014.366
Chang,
Y.,
Yan,
L.,
Fang,
H.,
Zhong,
S.
and
Liao,
W.
(2019)
Hsi-denet:
Hyperspectral
Image
Restoration
via
Convolutional
Neural
Network.
IEEE
Transactions
on
Geoscience
and
Remote
Sensing,
57,
667-682.
>https://doi.org/10.1109/tgrs.2018.2859203
Zhao,
X.,
Xu,
W.,
Jiang,
T.,
Wang,
Y.
and
Ng,
M.K.
(2020)
Deep
Plug-And-Play
Prior
for
Low-Rank
Tensor
Completion.
Neurocomputing,
400,
137-149.
>https://doi.org/10.1016/j.neucom.2020.03.018
Ulyanov,
D.,
Vedaldi,
A.
and
Lempitsky,
V.
(2020)
Deep
Image
Prior.
International
Journal
of
Computer
Vision,
128,
1867-1888.
>https://doi.org/10.1007/s11263-020-01303-4
Chen,
L.,
Jiang,
X.,
Liu,
X.
and
Haardt,
M.
(2022)
Reweighted
Low-Rank
Factorization
with
Deep
Prior
for
Image
Restoration.
IEEE
Transactions
on
Signal
Processing,
70,
3514-3529.
>https://doi.org/10.1109/tsp.2022.3183466
Cai,
J.,
Candès,
E.J.
and
Shen,
Z.
(2010)
A
Singular
Value
Thresholding
Algorithm
for
Matrix
Completion.
SIAM
Journal
on
Optimization,
20,
1956-1982.
>https://doi.org/10.1137/080738970
Cascarano,
P.,
Sebastiani,
A.,
Comes,
M.C.,
Franchini,
G.
and
Porta,
F.
(2021).
Combining
Weighted
Total
Variation
and
Deep
Image
Prior
for
Natural
and
Medical
Image
Restoration
via
ADMM.
2021
21st
International
Conference
on
Computational
Science
and
Its
Applications
(ICCSA),
Cagliari,
13-16 September 2021,
39-46.
>https://doi.org/10.1109/iccsa54496.2021.00016
The USC-SIPI Image Database. >http://sipi.usc.edu/database/