Table 1. The coefficients for the empirical model of global solar radiation, determined using monthly mean measurements at the Qianyanzhou station in 2013~2016, along with statistical metrics, i.e., coefficient of determination (R2), average of the absolute relative bias ( , %), normalized mean square error (NMSE), standard deviations of calculated and observed global solar irradiance (σcal and σobs, respectively), and the mean bias error (MAD, in MJ∙m−2 and %) and the root mean square error (RMSE, in MJ∙m−2 and %). Sample number n = 14 for S/G < 0.80 and n = 29 for S/G ≥ 0.80 [6] 表1. 千烟洲站总辐射经验模型的系数、可决系数(R2)、计算偏差绝对值的平均值( ,%)、归一化均方误差(NMSE)、计算值和测量值的标准差(σcal、σobs)、平均偏差误差(MAD,MJ∙m−2、%)、均方根误差(RMSE,MJ∙m−2、%)。千烟洲站使用2013~2016年月平均数据,对于S/G < 0.80和S/G ≥ 0.80的样本数n分别为14和29 [6]
S/G
A1
A2
A0
R2
NMSE
σcal
σobs
MAD
RMSE
range
(MJ∙m−2)
(%)
(MJ∙m−2)
(%)
<0.80
3.89
1.04
−1.04
0.69
8.73
0.02
0.32
0.39
0.15
8.68
0.23
13.38
≥0.80
3.89
0.32
−1.07
0.54
21.26
0.05
0.32
0.44
0.25
19.26
0.30
23.57
Table 2. As Table 1 , for using hourly mean measurements in 2008~2011 at the Qomolangma station, n = 7020
表2. 同
表1
,珠峰站,使用2008~2011年小时数据,n = 7020
A1
A2
A0
R2
δavg
NMSE
σcal
σobs
MAD
RMSE
(MJ∙m−2)
(%)
(MJ∙m−2)
(%)
5.521
0.859
−1.011
0.712
9.80
0.01
0.53
0.63
0.26
8.82
0.31
11.38
Table 3. As Table 1 , for using hourly mean measurements in 2017~2018 at the Ankara province station, n = 6160表3. 同 表1 ,Ankara province站,使用2017~2018年小时数据,n = 6160
A1
A2
A0
R2
δavg
NMSE
σcal
σobs
MAD
RMSE
(MJ∙m−2)
(%)
(MJ∙m−2)
(%)
3.587
2.977
−2.013
0.916
27.14
0.025
0.914
0.955
0.199
11.38
0.265
15.14
Table 4. As Table 1 , for using hourly mean measurements in 2008~2011 at the Sodankylä station, n = 3962表4. 同 表1 ,Sodankylä站,使用2008~2011年小时数据,n = 3962
A1
A2
A0
R2
δavg
NMSE
σcal
σobs
MAD
RMSE
(MJ∙m−2)
(%)
(MJ∙m−2)
(%)
2.521
2.523
−1.215
0.835
12.8
0.020
0.499
0.546
0.178
11.4
0.222
14.2
Figure 1. Scatter plot of calculated versus observed monthly global solar exposure (Gcal and Gobs) at the Qianyanzhou station (left and right for S/G < 0.80 (n = 14) and S/G ≥ 0.8 (n = 29), respectively)--图1. 千烟洲站太阳总辐射计算值和测量值(月均值)的散点图(左右图分别为S/G < 0.80和S/G ≥ 0.8情形,n = 14和29)--Figure 2. As Figure 1, for hourly global solar exposure under all-sky conditions at the Qomolangma station (n = 7020)--图2. 同图1,珠峰站太阳总辐射计算值和测量值(小时值)的散点图(n = 7020)--Figure 3. As Figure 2, for the Ankara province station (n = 6160)--图3. 同图2,Ankara province站太阳总辐射计算值和测量值(小时值)的散点图(n = 6160)--Figure 4. As Figure 2, for the Sodankylä station (n = 3962)--图4. 同图2,Sodankylä站太阳总辐射计算值和测量值(小时值)的散点图(n = 3962)--Figure 5. As Figure 2, for the Dome C station (n = 2771)--图5. 同图2,Dome C站太阳总辐射计算值和测量值(小时值)的散点图(n = 2771)--Table 5. As Table 1 , for using hourly mean measurements in 2008~2011 at the Dome C station, n = 2771表5. 同 表1 ,Dome C站,使用2008~2011年小时数据,n = 2771
Figure 6. Monthly global solar exposures calculated and observed (Gcal, Gobs), observed diffuse exposure (S) and scattering factor (S/G) at the Dome C station (n = 33,311)--图6. Dome C站太阳总辐射2006~2016小时值的计算值(Gcal)和测量值(Gobs),测量的散射辐射(S)和散射因子(S/G) (n = 33,311)--5. 太阳总辐射表的标定
References
阿布杜, 郑忠国, 李洪敏. 医学实验数据的质量控制问题[J]. 数理统计与管理, 2002, 21(5): 42-46.
刘洪, 黄燕. 我国统计数据质量的评估方法研究——趋势模拟评估法及其应用[J]. 统计研究, 2007, 24(8): 17-21.
郭明才. 实验数据可疑值的检验及计算机程序设计[J]. 环境与健康杂志, 1996, 13(4): 173-174.
多布拉, 次旦卓玛, 洛桑罗布, 甘茂, 黄涛, 格桑卓玛. 西藏地区VP型垂直摆倾斜仪观测数据质量及干扰分析[J]. 高原地震, 2022, 34(3): 65-72.
白建辉. 华北地区紫外与可见光辐射在大气中的传输[J]. 环境科学学报, 2010, 30(5): 915-925.
Bai, J. and Zong, X. (2021) Global Solar Radiation Transfer and Its Loss in the Atmosphere. Applied Sciences, 11, Article 2651. >https://doi.org/10.3390/app11062651
Bai, J., Zong, X., Ma, Y., Wang, B., Zhao, C., Yang, Y., et al. (2022) Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. International Journal of Environmental Research and Public Health, 19, Article 8906. >https://doi.org/10.3390/ijerph19158906
Bai, J., Wan, X., Arslan, E. and Zong, X. (2024) Global Solar Radiation and Its Interactions with Atmospheric Substances and Their Effects on Air Temperature Change in Ankara Province. Climate, 12, Article 35. >https://doi.org/10.3390/cli12030035
Bai, J., Heikkilä, A. and Zong, X. (2021) Long-Term Variations of Global Solar Radiation and Atmospheric Constituents at Sodankylä in the Arctic. Atmosphere, 12, Article 749. >https://doi.org/10.3390/atmos12060749
Bai, J., Zong, X., Lanconelli, C., Lupi, A., Driemel, A., Vitale, V., et al. (2022) Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). International Journal of Environmental Research and Public Health, 19, Article 3084. >https://doi.org/10.3390/ijerph19053084
Bayrakçı, H.C., Demircan, C. and Keçebaş, A. (2018) The Development of Empirical Models for Estimating Global Solar Radiation on Horizontal Surface: A Case Study. Renewable and Sustainable Energy Reviews, 81, 2771-2782. >https://doi.org/10.1016/j.rser.2017.06.082
Glover, J. and McCulloch, J.S.G. (1958) The Empirical Relation between Solar Radiation and Hours of Sunshine. Quarterly Journal of the Royal Meteorological Society, 84, 172-175. >https://doi.org/10.1002/qj.49708436011
Bird, R.E. (1984) A Simple, Solar Spectral Model for Direct-Normal and Diffuse Horizontal Irradiance. Solar Energy, 32, 461-471. >https://doi.org/10.1016/0038-092x(84)90260-3
Gueymard, C. (1993) Critical Analysis and Performance Assessment of Clear Sky Solar Irradiance Models Using Theoretical and Measured Data. Solar Energy, 51, 121-138. >https://doi.org/10.1016/0038-092x(93)90074-x
Myers, D.R. (2005) Solar Radiation Modeling and Measurements for Renewable Energy Applications: Data and Model Quality. Energy, 30, 1517-1531. >https://doi.org/10.1016/j.energy.2004.04.034
Besharat, F., Dehghan, A.A. and Faghih, A.R. (2013) Empirical Models for Estimating Global Solar Radiation: A Review and Case Study. Renewable and Sustainable Energy Reviews, 21, 798-821. >https://doi.org/10.1016/j.rser.2012.12.043
Bai, J. (2019) A Calibration Method of Solar Radiometers. Atmospheric Pollution Research, 10, 1365-1373. >https://doi.org/10.1016/j.apr.2019.03.011
Turner, J., Lu, H., White, I., King, J.C., Phillips, T., Hosking, J.S., et al. (2016) Absence of 21st Century Warming on Antarctic Peninsula Consistent with Natural Variability. Nature, 535, 411-415. >https://doi.org/10.1038/nature18645
Cao, Y. and Liang, S. (2018) Recent Advances in Driving Mechanisms of the Arctic Amplification: A Review. Chinese Science Bulletin, 63, 2757-2771. >https://doi.org/10.1360/n972018-00462
Cohen, J., Screen, J.A., Furtado, J.C., Barlow, M., Whittleston, D., Coumou, D., et al. (2014) Recent Arctic Amplification and Extreme Mid-Latitude Weather. Nature Geoscience, 7, 627-637. >https://doi.org/10.1038/ngeo2234
Zavalishin, N.N. (2021) Reasons for Modern Warming: Hypotheses and Facts. Journal of Atmospheric Science Research, 5, 11-17. >https://doi.org/10.30564/jasr.v5i1.4080
Bai, J. and Duhl, T. (2021) A Primary Generalized Empirical Model of BVOC Emissions for Some Typical Forests in China. Atmospheric Pollution Research, 12, Article 101126. >https://doi.org/10.1016/j.apr.2021.101126
Bai, J., Yang, F., Wang, H. and Xu, M. (2023) An Empirical Model of Gross Primary Productivity (GPP) and Relations between GPP and Its Driving Factors, Biogenic Volatile Organic Compounds in a Subtropical Conifer Plantation in China. Atmosphere, 14, Article 1046. >https://doi.org/10.3390/atmos14061046
Bai, J., Yang, F., Xu, M. and Wang, H. (2023) Empirical Models of Respiration and Net Ecosystem Productivity and Their Applications in a Subtropical Coniferous Plantation in China. Atmosphere, 14, Article 1557. >https://doi.org/10.3390/atmos14101557