Table 1. Eutectic temperature and eutectic composition of Na3AlF6-Li3AlF6 systemTable 1. Eutectic temperature and eutectic composition of Na3AlF6-Li3AlF6 system 表1. Na3AlF6-Li3AlF6体系共晶温度和共晶成分
Table 2. Eutectic temperature and eutectic composition of Na3AlF6-LiF systemTable 2. Eutectic temperature and eutectic composition of Na3AlF6-LiF system 表2. Na3AlF6-LiF体系共晶温度和共晶成分组成
Table 3. LiF subterms in the empirical formulas of liquidus temperature of each lithium electrolyteTable 3. LiF subterms in the empirical formulas of liquidus temperature of each lithium electrolyte 表3. 各含锂电解质初晶温度经验公式中的LiF子项
References
张蔚. 汽车摆臂用Al-Mg-Si多元铝合金组织和性能的研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2017.
Grjotheim, K., Malinovsky, C.K.M. and Matiasovsky, K. (2002) Aluminium Electrolysis: Fundamentals of the Hall-Heroult Process. Aluminium Verlag Marketing&Kommunikation GmbH, Düsseldorf, 53.
Chin, D.A. and Hollingshead, E.A. (1966) Liquidus Curves for Aluminum Cell Electrolyte. Journal of the Electrochemical Society, 113, Article 736. >https://doi.org/10.1149/1.2424103
Solheim, A., Stoen, L. and Kvello, J. (2012) Cryoscopic Data for Hall-Héroult Bath Containing Magnesium Fluoride, Calcium Fluoride, Potassium Cryolite, and Sodium Chloride. In: Suarez, C.E., Ed., Light Metals 2012. Springer, Cham, 763-768. >https://doi.org/10.1007/978-3-319-48179-1_131
Solheim, A., Rolseth, S., Skybakmoen, E., et al. (1996) Liquidus Temperatures for Primary Crystallization of Cryolite in Molten Salt Systems of Interest for Aluminum Electrolysis. Metallurgical and Materials Transactions B, 27, 739-744. >https://doi.org/10.1007/BF02915602
曹大力, 邱竹贤, 王吉坤, 等. 锂盐在铝电解中的作用[J]. 材料导报, 2006, 20(8): 90-93.
Hongmin, K., Yungang, B., Zhuxian, Q., et al. (2007) Liquidus Temperature, Density and Electrical Conductivity of Electrolyte for Aluminum Electrolysis. The Chinese Journal of Process Engineering, 7, 604-609.
阚洪敏, 王兆文, 班允刚, 等. NaCl和LiF的添加对铝电解质初晶温度影响的研究[J]. 冶金分析, 2007, 27(3): 13-17.
阚洪敏, 班允刚, 石忠宁, 等. LiF对铝电解质物理化学性质的影响[C]//国务院学位办教育部. 2006年全国博士生学术论坛——冶金工程分论坛论文集. 沈阳: 教育出版社, 2006: 85-88.
陈建设, 李德祥. 铝电解质Na
3AlF
6-AlF
3-LiF-MgF
2-CaF
2系初晶温度上20℃的熔盐性质和等溶成分[J]. 轻金属, 2009(1): 22-26.
Chen, B.X., Peng, J.P., Wang, Y.W., et al. (2020) Study on Liquidus Temperature of NaF-KF-LiF-AlF
3System with Low Cryolite Ratio. Metallurgical and Materials Transactions B, 51, 1181-1189. >https://doi.org/10.1007/s11663-020-01800-4
吕晓军, 双亚静, 胡凌云, 等. 铝电解质初晶温度和氧化铝溶解度的理论计算[J]. 轻金属, 2015(9): 27-31.
Robert, E., Olsen, J.E., Danek, V., et al. (2014) Structure and Thermodynamics of Alkali Fluoride-Aluminum Fluoride-Alumina Melts. Vapor Pressure, Solubility, and Raman Spectroscopic Studies. Journal of Physical Chemistry B, 101, 9447-9457. >https://doi.org/10.1021/jp9634520
Skybakmoen, E., Solheim, A. and Sterten, S. (1997) Alumina Solubility in Molten Salt Systems of Interest for Aluminum Electrolysis and Related Phase Diagram Data. Metallurgical and Materials Transactions B, 28, 81-86. >https://doi.org/10.1007/s11663-997-0129-9
Peng, J., Wei, Z., Di, Y., et al. (2020) Alumina Solubility in NaF-KF-LiF-AlF
3-Based Low-Temperature Melts. JOM, 72, 239-246. >https://doi.org/10.1007/s11837-019-03873-2
邱竹贤. 铝冶金物理化学[M]. 上海: 上海科学技术出版社, 1985: 113.
张跃宏, 翟秀静, 李斌川. 钾盐和锂盐对电解质初晶温度、密度、电导率的影响[C]//中国有色金属学会. 全国有色金属工业低碳经济及冶炼废气减排学术研讨会论文集. 长沙: 中南大学出版社, 2010: 31-33.
Chrenkova, M., Danek, V., Silny, A. and Utigard, T.A. (1996) Density, Electrical Conductivity and Viscosity of Low Melting Baths for Aluminum Electrolysis. TMS, Anaheim, 312.
马秀芳, 李德祥, 陈建设, 等. Na
3AlF
6-AlF
3-LiF-CaF
2系熔体的等溶初晶温度和等溶变温密度[J]. 中国有色金属学报, 2000, 10(1): 109.
马秀芳, 张世荣, 李德祥, 等. Na
3AlF
6-AlF
3-LiF-CaF
2系熔体变温密度的研究[J]. 有色金属, 1999(1): 61-64.
Wang, X., Peterson, R.D. and Tabereaux, A.T. (1992) Electrical Conductivity of Cryolitic Melts. In: Bearne, G., Dupuis, M. and Tarcy, G., Eds., Essential Readings in Light Metals. Springer, Cham. 57-64. >https://doi.org/10.1007/978-3-319-48156-2_8
Choudhary, G. (1973) Electrical Conductivity for Aluminum Cell Electrolyte between 950˚-1025˚C by Regression Equation. Journal of the Electrochemical Society, 120, Article 381. >https://doi.org/10.1149/1.2403460
Lv, X., Han, Z., Chen, J., et al. (2018) First-Principles Molecular Dynamics Study of Ionic Structure and Transport Properties of LiF-NaF-AlF
3Molten Salt. Chemical Physics Letters, 706, 237-242. >https://doi.org/10.1016/j.cplett.2018.06.005
Yoshida, K. and Dewing, E.W. (1972) The Apparent Solubility of Aluminum in Cryolite Melts. Metallurgical Transactions, 3, 1817-1821. >https://doi.org/10.1007/BF02642565
Ødegård, R. Sterten, Å. and Thonstad, J. (1988) On the Solubility of Aluminum in Cryolitic Melts. Metallurgical and Materials Transactions B, 19, 449-457. >https://doi.org/10.1007/BF02657743
Haarberg, G.M., Thonstad, J., Pietrzyk, S., et al. (2002) The Role of Dissolved Metal during Electrode Position of Aluminium from Cryolite-Alumina Melts. 131st TMS Annual Meeting 2002, Warrendale, 17 February 2002, 1083-1089.
Ujasinovic, V.L. J. (1990) Results of an Experimental Use of LiF in Industrial Pots. Light Metals, 341.
Wang, X., Peterson, R.D. and Richards, N.E. (1990) Dissolved Metals in Cryolitic Melts. In: Bearne, G., Dupuis, M. and Tarcy, G., Eds., Essential Readings in Light Metals. Springer, Cham, 49-56. >https://doi.org/10.1007/978-3-319-48156-2_7
Fellner, R. and Midtlyng, S. (1993) Electrical Conductivity of Low Melting Bath for Aluminium Electrolysis: The System Na
3AlF
6-2Li
3AlF
6-2AlF
3and the Influence of Additions of Al
2O
3, CaF
2and MgF
2. Journal of Applied Electrochemistry, 23, 78-81. >https://doi.org/10.1007/BF00241580
Fellner, R., Hives, J. and Korenko, M. (2001) Cathodic Overvoltage and the Content of Sodium and Lithium in Molten Aluminiumfuring Electrolysis of Cryolite-Based Melt. Electrochimica Acta, 46, 2379-2384. >https://doi.org/10.1016/S0013-4686(01)00432-7