Anonymous Authentication Scheme for Fog-Assisted V2G Networks
Vehicle-to-grid (V2G), as a new smart grid model, can be combined with renewable energy sources to provide electricity services, manage electricity demand, and establish a two-way interactive service model. When electric vehicles request charging and discharging services, they need to send identification information with identifiable information to the charging station, which causes some security and privacy threats. Therefore, in order to solve such problems, this paper proposes an anonymous authentication scheme for fog-assisted V2G network based on the idea of anonymous credential in cryptography, which meets the security requirements of anonymity, unforgeability, traceability, revocation and so on. In terms of performance, the functional analysis and performance test results of the scheme are given, and the computational cost of each entity in different stages is analyzed. The results show that the proposed scheme has practical significance in both functionality and performance. In summary, the proposed scheme can provide an efficient, private and secure authentication scheme for V2G networks.
V2G Networks
随着电力供应需求的不断增加,部署高效环保的智能电网已成为当前重要的发展目标。V2G网络作为智能电网
V2G技术的应用领域广泛,涵盖了电动汽车、能源管理、智能交通、物联网和智能家居等多个方面。在电动汽车领域,V2G技术为电动汽车提供了更为智能、高效的充电解决方案,同时充分利用电动汽车的储能资源为电网提供有力支持。在能源管理领域,V2G技术有助于实现能源的优化管理,提升电力系统的稳定性和可靠性。在智能交通领域,V2G技术为智能交通系统提供了有力支撑,实现车与车、车与充电桩之间的智能通信和便捷充电服务。在物联网和智能家居领域,V2G技术促进了设备之间的能量交换和数据交互,提升了生活的便捷性和舒适性。
V2G网络虽然可以提供充放电服务,但其服务过程存在各种安全与隐私挑战
双线性配对
2) 非退化性:满足 。
3) 可计算性:对于任意的 , ,配对 都可以被有效计算。
1) 离散对数难题
2) 判定Diffie-Hellman假设
3) Pointcheval-Sanders (PS)假设
本文方案涉及四类实体,包括注册中心(Registration Center, RC)、雾服务器(Fog Server, FS)、充电站(Charging Station, CS)和电动汽车(Electric Vehicles, EV)。本文构建方案模型如
注册中心:是云端可信权威机构,负责生成全局公共参数,处理系统内全部实体的注册申请。
雾服务器:部署在云网络边缘的FS,负责发放电动汽车电网访问凭证,作为云实体和终端实体之间的通信中介,包括向上层云服务器上传信息和向终端实体发送信息。
充电站:由电动汽车制造商提供的充电站,可以验证车辆是否有权限访问充放电服务。验证通过后,CS提供充电接口供电动汽车充电。
电动汽车:电动汽车配备了名为车载单元(On-board Unit, OBU)的防篡改装置,可以与附近的CS或EV通信,并执行充放电任务。
1) 初始化阶段
该步骤主要是生成系统中所使用的一些基本参数,然后利用公共参数生成注册中心、电网控制中心、雾服务器、充电站和电动汽车用户的公私钥以及相关参数,以便在后续的系统功能实现中使用。
:此算法主要用于生成方案中的全局公共参数。注册中心输入一个安全参数 ,然后输出一个全局的参数 。
:此算法将全局参数 作为输入,并输出注册可信中心的密钥对 。
:此算法将全局参数 作为输入,并输出雾服务器的密钥对 。
:此算法将全局参数 作为输入,并输出电动汽车的密钥对 。
2) 加入阶段
每一个加入V2G网络的电动汽车都要向RC发出加入申请,RC审核通过后为其颁发身份令牌用于后续身份认证。
:此算法将全局参数 和电动汽车私钥 作为输入,输出电动汽车用户的私钥持有性证明 。
:收到来自电动汽车侧的持有性证明后,注册中心RC首先验证证明的有效性,如果有效,则为其颁发与身份相关的令牌,并存储在本地数据库。
:此算法由EV执行,用来验证令牌的有效性,若有效,则输出1;反之,输出0。
3) 颁发阶段
在此阶段,每个EV与FS进行交互,以获取认证凭证。
:此算法由电动汽车EV侧执行,用于生成其私钥持有性证明以证明其身份合法性。即,以公共参数 ,用户私钥 和雾服务器公钥 为输入,输出私钥持有性证明 。
:此算法由EV执行,用来验证凭证 的有效性,若有效,则输出1;反之,输出0。
4) 认证阶段
在认证阶段,EV需要向CS证明自己有权访问服务,即EV根据CS发布的服务访问策略,出示相应的属性凭证来进行权限验证。同时,EV还需向CS证明自己的身份是合法的,没有处于撤销状态。
:此算法由EV侧执行,通过私钥 ,注册中心公钥 ,凭证 ,令牌 ,根据当前CS的访问策略 ,生成相应的身份认证信息 并发送给CS。
:此算法由CS侧执行,通过雾服务器FS的公钥 ,注册中心公钥 ,验证来自EV的身份认证信息 的有效性,若有效则输出1,并为其提供相应服务;反之,输出0,并拒绝提供服务。
匿名性:在身份认证阶段,应该保持EV身份信息的机密性,使攻击者无法根据提供的身份认证信息确定其真实身份。必要时,只有RC能恢复真实身份。
不可伪造性:攻击者不能伪造有效的匿名凭证或未被撤销的令牌。只有持有FS颁发的有效凭证的EV才能通过CS的验证。
双向认证:为防止网络中存在恶意攻击者,通信双方在接入充放电业务前必须实现相互身份认证。在该方案中,EV发送请求时使用FS颁发的匿名验证凭据,从而抵抗伪造攻击。
本节进行了仿真实验来测试实际性能。使用的测试平台参数如下:1.5 GHz的i.MX6DL (Cortex-A9) CPU,2GB内存,Android 6.0操作系统,JPBC密码库
在
实体 |
初始化 |
加入 |
颁发 |
认证 |
RC |
|
|
- |
- |
FS |
|
- |
|
- |
EV |
|
|
|
|
CS |
- |
- |
- |
|
在通信代价方面,通过实验基准测试,可以得出基于Type F曲线生成的 群和 群的元素长度分别为40字节和80字节,而 群中的元素长度为20字节。在本实验的认证阶段中,车辆OBU向服务提供商发送一个随机化后的凭证,即一个 群元素,其实验值为40字节。而出示凭证需要4个 群元素和7个标量,即理论值为 。因此,本实验中车辆OBU出示一个匿名凭证需要发送300字节。
总而言之,本文提出了一种适用于雾辅助下V2G网络的匿名凭证方案,为解决V2G网络的隐私和安全问题提供了一种匿名认证方案。从性能角度出发,根据不同阶段的理论时间代价和通信代价可以看出,各阶段均在各实体的计算能力范围内。
感谢全部参与本文章撰写工作的作者。