jocr Journal of Organic Chemistry Research 2330-5231 2330-524X beplay体育官网网页版等您来挑战! 10.12677/jocr.2024.122021 jocr-89354 Articles 化学与材料 不对称有机催化反应的国内研究进展
Progress of Domestic Research of Asymmetric Organic Catalysis
陈智超 周兵星 王小燕 王亮霞 兰州交通大学化学化工学院,甘肃 兰州 01 04 2024 12 02 236 248 13 3 :2024 11 3 :2024 11 6 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 目前,手性分子的合成已经是化学科学研究的一个核心领域。在众多已报道的合成方法中,不对称有机催化已成为获得手性化合物的最直接有效的方法之一。在过去的几十年里,不对称催化取得了重大进展,化学家们也设计并合成了各种不同类型的有机小分子催化剂。本文主要从不对称有机催化方面综述了近年来国内化学家在该方向的研究进展。在此,我们并未对所有文献进行罗列而是选取了有代表性的例子,以突出在这一领域取得的重要进展。
At present, the synthesis of chiral molecules has been a core research area in chemical science and technology. Among the plethora of reported synthetic methods, asymmetric organic catalysis has emerged as one of the most efficient and direct ways to obtain optically pure chiral compounds. Over the past several decades, significant progress has been achieved in asymmetric organic catalysis, and various types of organic small molecule catalysts have been carefully designed and synthesized by chemists. This article mainly reviews the recent progress of asymmetric catalysis made by Chinese chemists from asymmetric organic catalysis. Here, this review does not intend to be comprehensive, but only representative examples are selected to highlight the important progress made in this field.
不对称催化,有机催化,不对称反应,有机合成
Asymmetric Catalysis
Organocatalysts Asymmetric Reactions Organic Synthesis
1. 引言

手性化合物的精准合成作为手性科学的核心研究领域,已经为医学、农药、信息学和材料等领域提供了关键技术。随着新的合成方法的发展,我们已经可以用精确和实用的方式获得结构多样的手性化合物,这为推进该领域的创新奠定了基础。在众多已报道的合成方法中,采用手性催化剂的不对称有机催化反应是获得手性化合物的最有效方法。在过去的几十年里,不对称催化取得了重大进展,我们已经得到了各种不同类型的有机小分子催化剂。

与此同时,科学家们设计出了各种类型的不对称有机催化反应以及新的催化方法和策略,所以我们能够以高度对映选择性的方式有效地构建C-H,C-C和C-X键。这些研究已成功地应用于天然产物和功能材料的不对称合成以及手性药物和农药的工业制备( 图1 )。

Figure 1. Chiral drugs synthesized by asymmetric catalytic hydrogenation reaction--图1. 通过不对称催化氢化反应合成的手性药物--

近二十年来,先是Knowles,Noyori和Sharpless因其对过渡金属催化的不对称氢化和氧化反应的杰出贡献而获得2001年诺贝尔化学奖。更重要的是,List和MacMillan在不对称有机催化发展方面的杰出贡献,使得诺贝尔化学奖在2021年再次花落不对称催化领域。

自20世纪80年代始,中国的手性科学技术开始得以研究,90年代开始受到重视。1995年,戴立信教授、陆熙炎教授、朱光美教授发表了一篇综述文章,介绍了当时国际上手性科学技术的最新进展 [1] 。在过去的二十年里,中国的手性科学技术领域取得了很大的进展 [2] 。为反映出我们在不对称方面的研究情况,本文主要综述了近年来中国化学家在不对称有机催化方面的研究进展。

2. 不对称有机催化反应的方法 2.1. 手性伯胺催化

清华大学的罗三中课题组开发了手性仿生氨基催化体系。在其研究中,一级到三级邻二胺在各种催化转化中均显现出良好的结果 [3] [4] [5] [6] 。他们开发了新的仲胺中间体策略,从而进一步扩大了仲胺催化剂的催化范围。反应的机理是利用光氧化还原策略通过单电子转移(SET)过程氧化烯胺。与典型的叔烯胺占据分子轨道不同,叔烯胺自由基阳离子中的酸性胺基N-H倾向于失去1个质子生成α-亚胺自由基。2017年,该课题组报道了α-亚胺自由基在光催化脱羧烷基化反应中的催化作用( 图2 ) [7] 。该催化体系包括氨基催化剂C1、光敏剂和高价碘试剂。接着,该课题组利用手性伯胺C2、钴金属催化剂和铱基光敏剂的三重催化体系,将α-亚胺自由基催化扩展到脱氢烯丙基烷基化反应中( 图2 ) [8]

Figure 2. Photo-induced α-imino radical in aminocatalysis--图2. 氨基催化中光诱导α-亚胺自由基的研究--

此外,他们用氨基化合物与M-H催化剂以协同催化的方式结合,探索出了羰基化合物与烯烃或炔烃的不对称α-烷基化反应的新体系( 图3 )。Pd和手性伯胺协同催化α-支链-β-酮羰基和醛对烯烃和炔烃的不对称对映选择性末端加成 [9] ,该催化体系后来扩展到丁二烯 [10] 和1,3-烯炔 [11] 。与此同时,他们还研究了一种手性伯胺和Rh双催化烯胺与炔的偶联反应 [12] 。反应机理表明氨基催化剂的手性源均在立体控制中起了重要作用。

Figure 3. Catalytic asymmetric alkylation of alkenes via combination of aminocatalysis with M-H catalysis--图3. 氨催化剂与M-H催化剂相结合催化烯烃或炔烃的不对称烷基化--

双有机催化也被证明是一种强大的策略,可以使新的反应催化效果超过单个催化剂的效果。在2021年,一个酮与手性伯胺协同催化体系(C5和C6)以过氧化氢作为末端氧化剂,在β-酮羰基的不对称α-羟基化反应中被报道( 图4 ) [13] 。胺催化剂一方面经过典型的烯胺催化循环,另一方面与酮催化剂反应,通过恶氮吡啶中间体活化H2O2。最近,该课题组还提出了一种手性体积庞大的路易斯三联催化剂( 图4 ) [14] 。该催化剂包括体积庞大的手性伯胺、B(C6F5)3和体积庞大的叔胺。该策略适用于β-酮羰基或α-支链醛具有高化学和立体选择性的对映选择性二磺化反应。

Figure 4. Synergistic organocatalytic reactions--图4. 协同有机催化反应--
2.2. 手性N-杂环碳催化

自从发现了N-杂环碳(NHC)与醛类化合物的混合催化反应以来,其在有机催化方面显示出了巨大的潜力。随着氧化剂的引入,NHC催化有了显著的进展。2015年,池永贵教授课题组报道了手性NHC催化剂(C9)在硝基芳烃为氧化剂的情况下对映选择性的烯醛β-羟基化反应( 图5 ) [15] 。通过机理研究可以知道到Breslow中间体经过单电子转移过程形成自由基阳离子Int2,整个过程涉及多个自由基中间体。

Figure 5. Enantioselective β-hydroxylation of enals by chiral NHC catalyst--图5. 手性NHC催化剂催化不对称烯醛β-羟基化反应--

2017年,叶松研究员课题组将单电子转移氧化策略扩展到高烯醇化物和烯醛的交叉偶联,其中硝基苯用于单电子转移氧化和氢原子转移( 图6 ) [16] 。2019年池永贵教授课题组开发了一种新颖的手性硝基芳烃用于氧化NHC过程。非手性NHC催化剂(C10)和手性氧化剂的组合对烯醛的氧化表现出良好的对映选择性 [17] 。随后一种有效且简单的手性酰胺氧化剂(C13)也被开发出来用于了相同的反应 [18]

Figure 6. SET oxidation strategy in the cross-coupling of homoenolate and enolate--图6. 单电子转移氧化策略应用于高烯醇化物和烯醛的交叉偶联--

除了共价催化外,NHC催化剂还表现出非共价催化性能,这主要是基于其固有的Brønsted碱度。黄湧教授课题组首次将Brønsted碱与NHC催化用于共轭加成 [19] 。最近,为了使Michael反应的底物活性降低,该课题组开发了一种双功能NHC催化剂,该催化剂带有一个额外的硫脲作为氢键供体,可用于与氨基甲酸酯的aza-Michael加成( 图7 ) [20] 。烷基硒醇也可以进行类似的反应 [21] 。机理研究显示氢键受体和给体之间的配合是必不可少的。

Figure 7. Brønsted base catalysis with NHC in the conjugated addition reactions--图7. Brønsted碱与NHC催化剂用于共轭加成反应--
2.3. 手性磷酸催化 Figure 8. Enantioselective construction of chiral tetraarylmethanes from triarylmethanol by chiral phosphoric acid catalytic--图8. 手性磷酸催化三芳基甲醇对映选择性合成手性四芳基甲烷--

作为一种强大的手性Brønsted酸催化剂,手性磷酸(CPA)的新催化作用不断被发现。由于四取代碳立体中心的立体阻碍性质和芳香取代基的立体分化困难,对映选择性构建具有挑战性。2020年,香港科技大学孙建伟教授课题组报道了一个手性磷酸催化体系,可以从三芳基甲醇对映选择性地合成手性四芳基甲烷( 图8 ) [22] 。在对位上需要羟基来稳定碳正离子中间体。CPA的作用是控制亲核芳基试剂的攻击路径。然后采用DDQ氧化和CPA催化的方法,由三芳基甲烷直接合成四芳基甲烷 [23] 。最近,该反应范围扩展到含间羟基的芳烃 [24]

多组分反应因其步骤少或者原子经济性强而成为一种高效的合成策略。南方科技大学谭斌教授课题组报道了不对称磷酸催化的Ugi反应,其中醛或酮、胺、羧酸和异氰化物聚集形成α-酰基氨基酰胺( 图9 ) [25] 。CPA同时作为Brønsted碱和酸来激活底物。计算研究表明,SPINOL支架上庞大的2,4,6-三环己基苯基在立体控制中起到了必不可少的作用。此外,CPA也可用于将卡宾插入N-H键。

Figure 9. Asymmetric Ugi reaction by chiral phosphoric acid--图9. 手性磷酸催化的不对称Ugi反应--

2023年,孙建伟教授课题组报道了可见光诱导α-重氮酯的对映选择性N-H插入( 图10 ) [26] 。在这个反应中,DMSO是反应发生的必要条件,可能是为了捕获碳中间体如亚砜酰化铵。通过手性磷阴离子诱导的动态动力学分解形成对映体富集产物。

Figure 10. Enantioselective N-H insertion of α-diazoesters induced by visible light--图10. 可见光诱导α-重氮酯的对映选择性N-H插入反应--

与此同时,南开大学周其林院士课题组报道了一种不需要任何额外添加剂就能用于类似反应的螺旋磷酰胺催化剂。他们仔细调整了催化剂的空间位阻性能和pKa,以确保质子与游离乙烷中间体的顺利转移( 图10 ) [27]

2.4. 手性硫族化物催化

对映选择性亲电反应是烯烃官能化的一个基本过程,手性路易斯碱已被证明是这类反应的有效催化剂。中山大学赵晓丹教授课题组在这方面处于领先地位,他们首创了基于茚的手性芳基硫族催化剂,并将其成功运用于烯烃、炔烃和芳烃的亲电反应 [28] 。硫化物基催化剂通常用于卤代官能化,而硒化物通常适用于硫代化。例如,手性硒化物催化已成功地应用于烯烃分子内和分子间硫代化( 图11 ) [29] [30] 。此外,手性硫化物催化还被开发用于烯丙基磺胺的分子内对映选择性氯化 [31] 和分子间碘功能化( 图11 ) [32] [33]

Figure 11. Intermolecular functionalization of Alkenes by chiral chalcogenide catalysis--图11. 手性硫族催化剂催化烯烃分子间硫代化反应--

2022年,上海交通大学陈志敏副教授课题组还发现了手性硒化物与非手性磺酸催化联芳基苯酚的磺化反应( 图12 ) [34] 。这是首次实现了联芳基苯酚亲电磺化对映选择性合成轴手性含硫联芳基衍生物。对照实验和计算研究表明,催化剂与底物之间存在多种非共价相互作用,特别是氢键相互作用在对映选择性和反应活性方面起着至关重要的作用。

Figure 12. The sulfonation of biarylphenol catalyzed by chiral selenides and achiral sulfonic acid--图12. 手性硒化物与非手性磺酸催化联芳基苯酚的磺化反应--
2.5. 手性羰基催化

从生物学角度看,羰基催化是胺的α-功能化的一种可行策略。然而,与氨基催化相比,手性羰基催化的发展相对滞后。2014年,西南大学郭其祥教授课题组首次报道了BINOL衍生的手性醛对氨基酯的不对称直接α-烷基化( 图13 ) [35]

Figure 13. Asymmetric direct α-alkylation of amino esters by BINOL-derived chiral aldehydes--图13. BINOL衍生的手性醛对氨基酯的不对称直接α-烷基化--

2018年,上海师范大学赵宝国教授课题组报道了仿生吡哆醛催化剂催化甘氨酸叔丁酯与N-膦酰亚胺的Mannich反应( 图14 ) [36] 。随后,他们将手性羰基催化成功应用于不对称Michael反应 [37] [38] [39] 、羟醛反应 [40] 、与Morta-bayls-Hillman (MBH)加合物的烯丙基化 [41] 、1,6共轭加成 [42] 、α-芳基化和直接取代烯丙基化 [43]

Figure 14. Mannich reaction between tert-butyl glycinate and N-phosphinyl imine by biomimic pyridoxal-based aldehyde catalyst--图14. 仿生吡哆醛催化甘氨酸叔丁基与N-膦酰亚胺的Mannich反应--

2022年,赵宝国教授课题组利用手性羰基催化实现了惰性碳氢键的直接官能化。醛的催化作用扩展到非活性胺,如苯胺和丙炔胺,分别与醛和酮反应( 图15 ) [44] [45] 。在这两种情况下,在催化剂上安装氢键供体与羰基相互作用,以获得更好的立体控制和效率。

Figure 15. Catalyze the reaction of inactive amines with aldehydes--图15. 催化非活性胺与醛反应--

此外,2016年郭其祥教授课题组还实现了氨基酸酯的α-烯丙基烷基化的醛/金属协同催化( 图16 ) [46] 、并进一步将醛和金属协同催化扩展到α-苄基化 [47] 、α-丙基化 [48] 、α-烯丙基化 [49] 、和α-烷基色氨酸合成 [50]

Figure 16. α-allylic alkylation of amino acid esters by synergistic aldehyde/metal catalysis--图16. 醛和金属协同催化氨基酸酯的α-烯丙基烷基化--

结合各个实例从仿生催化角度看,手性羰基催化具有反应条件温和、绿色无公害、催化效率高、合成步骤短等优点,可以融合生物催化和传统的化学催化的特点,在对环境友好的条件下,实现高效和精准控制的化学转化。

2.6. 手性硼烷催化

金属基路易斯酸已经广泛用于有机合成,而其有机路易斯酸在很大程度上尚待开发。2018年,中国科学院大学杜海峰教授课题组报道了由手性磷酸(CPAs)和双(五氟苯)硼烷组成的催化体系对亚胺 [51] 和芳基酮 [52] 的不对称加氢反应。他们还将该体系应用于催化2-乙烯基苄基醇的不对称分子内氢烷氧基化反应( 图17 ) [53] 。CPAs与硼烷反应生成手性硼磷酸盐,促进了亲电烷氧基化。

Figure 17. Asymmetric intramolecular hydroalkoxylation--图17. 不对称分子内氢烷氧基化反应--

2021年,南开大学王晓晨教授课题组开发了一种新的C2对称双硼烷催化剂。他们实现了无环α,β-不饱和酮的不对称间乙烯Mannich反应( 图18 ) [54] 。同年,他们用sipro-bisborane催化剂实现了1,2-二氢喹啉和炔酮之间的[2 + 2]环加成反应( 图18 ) [55] 。在这个实验中,催化剂促进了1,2二氢喹啉的氢化物转移和炔酮的活化。除活化底物外,硼烷作为路易斯酸也可用于提高CPA催化剂的酸度。

Figure 18. Catalytic reaction by C2-symmetric bisborane catalysts--图18. C2对称双硼烷催化剂催化反应--

2020年,南开大学李鑫教授课题组使用B(C6F5)3和CPA体系催化酮亚胺与烯反应( 图19 ) [56] 。根据计算研究,B(C6F5)3的加入使CPA的酸度提高了9个pKa以上单位,证明了我们所观察到的催化作用。

Figure 19. Catalyze ketimine-ene reaction--图19. 催化酮亚胺与烯反应--

硼酸催化是一种较新的催化策略。2023年,南京大学郑文华课题组开发了一种C2对称的手性硼酸作为亲核催化剂( 图20 ) [57] 。在硼催化剂的作用下,2,2-二取代-1,3-丙二醇催化脱对称生成了收率高、对映选择性好的单酯。他们提出了一种立体控制模型,认为立体选择性的产生是由于sp3杂化硼的氧原子外侧侧链被阻断,使得氧原子内侧能够与酰基氯反应。

Figure 20. Catalytic esterification of chiral boronic acid--图20. 手性硼酸催化酯化--
3. 总结

综上所述,在过去的十几年里,我国在不对称有机催化领域取得了很大的进展。目前已开发出手性伯胺催化、N-杂环碳催化、手性磷酸催化、手性硫族化物催化、手性羰基催化、手性硼烷催化,且这些方法已应用于许多不对称反应中。同时,运用这些催化方法成功实现了一系列传统方法难以实现的具有挑战性的不对称反应。这些进展促进了多种手性分子的构建以及手性药物和手性功能材料的制备。

然而,手性催化剂的催化效率和立体选择性、手性诱导过程中多因素控制的复杂性等仍是不对称有机催化领域有待解决的科学问题。因此,从基础研究和工业应用两方面来看,未来应重点关注开发涉及高活性中间体(如自由基和碳烯)和具有挑战性的烷烃和芳烃底物的对映选择性转化的新策略和方法。

此外,还需要加强在不对称有机催化方面原创性和创新性的核心技术的开发,并加强与工业,特别是与制药公司的合作。预计我国未来不对称有机催化将不断取得新的突破,为手性药物、手性农用化学品、手性功能材料等的开发提供有力支持。

NOTES

*通讯作者。

References 戴立信, 陆熙炎, 朱光美. 手性技术的兴起[J]. 化学通报, 1995(6): 15-22+14. Ma, S.M. (2011) Asymmetric Catalysis from a Chinese Perspective. Topics in Organometallic Chemistry, Vol. 36, Springer, Berlin, 1-354. >https://doi.org/10.1007/978-3-642-19472-6 Zhang, L., Fu, N.K. and Luo, S.Z. (2015) Pushing the Limits of Aminocatalysis: Enantioselective Transformations of α-Branched β-Ketocarbonyls and Vinyl Ketones by Chiral Primary Amines. Accounts of Chemical Research, 48, 986-997. >https://doi.org/10.1021/acs.accounts.5b00028 Xiao, X., Xu, K., Gao, Z.H., Zhu, Z.H., Ye, C., Zhao, B., Luo, S.Z., Ye, S., Zhou, Y.G., Xu, S., Zhu, S.F., Bao, H., Sun, W., Wang, X. and Ding, K. (2023) Biomimetic Asymmetric Catalysis. Science ChinaChemistry, 66, 1553-1633. >https://doi.org/10.1007/s11426-023-1578-y Luo, S. and Zhang, L. (2012) Bio-Inspired Chiral Primary Amine Catalysis. Synlett, 23, 1575-1589. >https://doi.org/10.1055/s-0031-129068 Cai, M., Zhang, R., Yang, C. and Luo, S. (2022) Bio-Inspired Small Molecular Catalysis. Chinese Journal of Chemistry, 41, 548-559. >https://doi.org/10.1002/cjoc.202200628 Wang, D., Zhang, L. and Luo, S. (2017) Enantioselective Decarboxylative Alpha-Alkynylation of β-Ketocarbonyls via a Catalytic α-Imino Radical Intermediate. Organic Letters, 19, 4924-4927. >https://doi.org/10.1021/acs.orglett.7b02386 Jia, Z., Zhang, L. and Luo, S. (2022) Asymmetric C-H Dehydrogenative Allylic Alkylation by Ternary Photoredox-Cobalt-Chiral Primary Amine Catalysis under Visible Light. Journal of the American Chemical Society, 144, 10705-10710. >https://doi.org/10.1021/jacs.2c03299 Zhou, H., Wang, Y., Zhang, L., Cai, M. and Luo, S. (2017) Enantioselective Terminal Addition to Allenes by Dual Chiral Primary Amine/Palladium Catalysis. Journal of the American Chemical Society, 139, 3631-3634. >https://doi.org/10.1021/jacs.7b00437 Wang, Y., Zhang, J., You, C., Mi, X. and Luo, S. (2022) Catalytic Asymmetric Addition and Telomerization of Butadiene with Enamine Intermediates. CCS Chemistry, 4, 2267-2275. >https://doi.org/10.31635/ccschem.021.202101240 You, C., Shi, M., Mi, X. and Luo, S. (2023) Asymmetric α-Allylic Allenylation of β-Ketocarbonyls and Aldehydes by Synergistic Pd/Chiral Primary Amine Catalysis. Nature Communications, 14, Article No. 2911. >https://doi.org/10.1038/s41467-023-38488-4 Zhang, J., Wang, Y., You, C., Shi, M., Mi, X. and Luo, S. (2022) Asymmetric Coupling of β-Ketocarbonyls and Alkynes by Chiral Primary Amine/Rh Synergistic Catalysis. Organic Letters, 24, 1186-1189. >https://doi.org/10.1021/acs.orglett.1c04334 Cai, M., Xu, K., Li, Y., Nie, Z., Zhang, L. and Luo, S. (2021) Chiral Primary Amine/Ketone Cooperative Catalysis for Asymmetric α-Hydroxylation with Hydrogen Peroxide. Journal of the American Chemical Society, 143, 1078-1087. >https://doi.org/10.1021/jacs.0c11787 Zhang, Q., Li, Y., Zhang, L. and Luo, S. (2021) Catalytic Asymmetric Disulfuration by a Chiral Bulky Three-Component Lewis Acid-Base. Angewandte Chemie International Edition, 60, 10971-10976. >https://doi.org/10.1002/anie.202101569 Zhang, Y., Du, Y., Huang, Z., Xu, J., Wu, X., Wang, Y., Wang, M., Yang, S., Webster, R.D. and Chi, Y.R. (2015) N-Heterocyclic Carbene-Catalyzed Radical Reactions for Highly Enantioselective β-Hydroxylation of Enals. Journal of the American Chemical Society, 137, 2416-2419. >https://doi.org/10.1021/ja511371a Chen, X.Y., Chen, K.Q., Sun, D.Q. and Ye, S. (2017) N-Heterocyclic Carbene-Catalyzed Oxidative [3+2] Annulation of Dioxindoles and Enals: Cross Coupling of Homoenolate and Enolate. Chemical Science, 8, 1936-1941. >https://doi.org/10.1039/C6SC04135C Wang, H., Wang, Y., Chen, X., Mou, C., Yu, S., Chai, H., Jin, Z. and Chi, Y.R. (2019) Chiral Nitroarenes as Enantioselective Single-Electron-Transfer Oxidants for Carbene-Catalyzed Radical Reactions. Organic Letters, 21, 7440-7444. >https://doi.org/10.1021/acs.orglett.9b02736 Yang, X., Wang, H., Jin, Z. and Chi, Y.R. (2021) Development of Green and Low-Cost Chiral Oxidants for Asymmetric Catalytic Hydroxylation of Enals. Green Synthesis and Catalysis, 2, 295-298. >https://doi.org/10.1016/j.gresc.2021.05.002 Chen, J. and Huang, Y. (2014) Asymmetric Catalysis with N-Heterocyclic Carbenes as Non-Covalent Chiral Templates. Nature Communications, 5, Article No. 3437. >https://doi.org/10.1038/ncomms4437 Guo, F., Chen, J. and Huang, Y. (2021) A Bifunctional N-Heterocyclic Carbene as a Non-Covalent Organocatalyst for Enantioselective Aza-Michael Addition Reactions. ACS Catalysis, 11, 6316-6324. >https://doi.org/10.1021/acscatal.1c01908 Li, E., Chen, J. and Huang, Y. (2022) Enantioselective Seleno-Michael Addition Reactions Catalyzed by a Chiral Bifunctional N-Heterocyclic Carbene with Noncovalent Activation. Angewandte Chemie International Edition, 61, e202202040. >https://doi.org/10.1002/anie.202202040 Li, X., Duan, M., Deng, Z., Shao, Q., Chen, M., Zhu, G., Houk, K.N. and Sun, J. (2020) Catalytic Enantioselective Synthesis of Chiral Tetraarylmethanes. Nature Catalysis, 3, 1010-1019. >https://doi.org/10.1038/s41929-020-00535-4 Li, Z., Li, Y., Li, X., Wu, M., He, M.L. and Sun, J. (2021) Organocatalytic Asymmetric Formal Oxidative Coupling for the Construction of All-Aryl Quaternary Stereocenters. Chemical Science, 12, 11793-11798. >https://doi.org/10.1039/D1SC03324G Tan, X., Deng, Z., Wang, Q., Chen, S., Zhu, G. and Sun, J. (2023) Enantioselective Synthesis of Tetraarylmethanes through Meta-Hydroxyl-Directed Benzylic Substitution. Nature Synthesis, 2, 275-285. >https://doi.org/10.1038/s44160-022-00211-4 Zhang, J., Yu, P., Li, S.Y., Sun, H., Xiang, S.H., Wang, J.J., Houk, K.N. and Tan, B. (2018) Asymmetric Phosphoric Acid-Catalyzed Four-Component Ugi Reaction. Science, 361, 1087-1095. >https://doi.org/10.1126/science.aao6575 Guo, W., Zhou, Y., Xie, H., Yue, X., Jiang, F., Huang, H., Han, Z. and Sun, J. (2023) Visible-Light-Induced Organocatalytic Enantioselective N-H Insertion of α-Diazoesters Enabled by Indirect Free Carbene Capture. Chemical Science, 14, 843-848. >https://doi.org/10.1039/D2SC05149D Pan, J.B., Zhang, X.G., Shi, Y.F., Han, A.C., Chen, Y.J., Ouyang, J., Li, M.L. and Zhou, Q.L. (2023) A Spiro Phosphamide Catalyzed Enantioselective Proton Transfer of Ylides in a Free Carbene Insertion into N-H Bonds. Angewandte Chemie International Edition, 62, e202300691. >https://doi.org/10.1002/anie.202300691 Liao, L. and Zhao, X. (2022) Indane-Based Chiral Aryl Chalcogenide Catalysts: Development and Applications in Asymmetric Electrophilic Reactions. Accounts of Chemical Research, 55, 2439-2453. >https://doi.org/10.1021/acs.accounts.2c00201 Liu, X., An, R., Zhang, X., Luo, J. and Zhao, X. (2016) Enantioselective Trifluoromethylthiolating Lactonization Catalyzed by an Indane-Based Chiral Sulfide. Angewandte Chemie International Edition, 55, 5846-5850. >https://doi.org/10.1002/anie.201601713 Luo, J., Cao, Q., Cao, X. and Zhao, X. (2018) Selenide-Catalyzed Enantioselective Synthesis of Trifluoromethylthiolated Tetrahydronaphthalenes by Merging Desymmetrization and Trifluoromethylthiolation. Nature Communications, 9, Article No. 527. >https://doi.org/10.1038/s41467-018-02955-0 Cao, Q., Luo, J. and Zhao, X. (2019) Chiral Sulfide Catalysis for Desymmetrizing Enantioselective Chlorination. Angewandte Chemie International Edition, 58, 1315-1319. >https://doi.org/10.1002/anie.201811621 Liao, L., Xu, X., Ji, J. and Zhao, X. (2022) Asymmetric Intermolecular Iodinative Difunctionalization of Allylic Sulfonamides Enabled by Organosulfide Catalysis: Modular Entry to Iodinated Chiral Molecules. Journal of the American Chemical Society, 144, 16490-16501. >https://doi.org/10.1021/jacs.2c05668 Duan, Y. and Luo, S. (2022) Organosulfide Catalysis for Chiral Iodinated Molecules. Chem Catalysis, 2, 2828-2830. >https://doi.org/10.1016/j.checat.2022.10.037 Luo, H.Y., Li, Z.H., Zhu, D., Yang, Q., Cao, R.F., Ding, T.M. and Chen, Z.M. (2022) Chiral Selenide/Achiral Sulfonic Acid Cocatalyzed Atroposelective Sulfenylation of Biaryl Phenols via a Desymmetrization/Kinetic Resolution Sequence. Journal of the American Chemical Society, 144, 2943-2952. >https://doi.org/10.1021/jacs.1c09635 Xu, B., Shi, L.L., Zhang, Y.Z., Wu, Z.J., Fu, L.N., Luo, C.Q., Zhang, L.X., Peng, Y.G. and Guo, Q.X. (2014) Catalytic Asymmetric Direct α-Alkylation of Amino Esters by Aldehydes via Imine Activation. Chemical Science, 5, 1988-1991. >https://doi.org/10.1039/c3sc53314j Chen, J., Gong, X., Li, J., Li, Y., Ma, J., Hou, C., Zhao, G., Yuan, W. and Zhao, B. (2018) Carbonyl Catalysis Enables a Biomimetic Asymmetric Mannich Reaction. Science, 360, 1438-1442. >https://doi.org/10.1126/science.aat4210 Ma, J., Zhou, Q., Song, G., Song, Y., Zhao, G., Ding, K. and Zhao, B. (2021) Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angewandte Chemie International Edition, 60, 10588-10592. >https://doi.org/10.1002/anie.202017306 Wen, W., Chen, L., Luo, M.J., Zhang, Y., Chen, Y.C., Ouyang, Q. and Guo, Q.X. (2018) Chiral Aldehyde Catalysis for the Catalytic Asymmetric Activation of Glycine Esters. Journal of the American Chemical Society, 140, 9774-9780. >https://doi.org/10.1021/jacs.8b06676 Wang, W.Z., Shen, H.R., Liao, J., Wen, W. and Guo, Q.X. (2022) A Chiral Aldehyde-Induced Tandem Conjugated Addition-Lactamization Reaction for Constructing Fully Substituted Pyroglutamic Acids. Organic Chemistry Frontiers, 9, 1422-1426. >https://doi.org/10.1039/D1QO01923F Cheng, A., Zhang, L., Zhou, Q., Liu, T., Cao, J., Zhao, G., Zhang, K., Song, G. and Zhao, B. (2021) Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie International Edition, 60, 20166-20172. >https://doi.org/10.1002/anie.202104031 Ma, J., Gao, B., Song, G., Zhang, R., Wang, Q., Ye, Z., Chen, W.W. and Zhao, B. (2022) Asymmetric α-Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angewandte Chemie International Edition, 61, e202200850. >https://doi.org/10.1002/anie.202200850 Wen, W., Luo, M.J., Yuan, Y., Liu, J.H., Wu, Z.L., Cai, T., Wu, Z.W., Ouyang, Q. and Guo, Q.X. (2020) Diastereodivergent Chiral Aldehyde Catalysis for Asymmetric 1,6-Conjugated Addition and Mannich Reactions. Nature Communications, 11, Article No. 5372. >https://doi.org/10.1038/s41467-020-19245-3 Shen, H.R., Li, C.X., Jiang, X., Lin, Y., Liu, J.H., Zhu, F., Wu, Z.L., Cai, T., Wen, W., He, R.X. and Guo, Q.X. (2023) Chiral Aldehyde Catalysis Enables Direct Asymmetric α-Substitution Reaction of N-Unprotected Amino Acids with Halohydrocarbons. Chemical Science, 14, 5665-5671. >https://doi.org/10.1039/D3SC01294H Hou, C., Peng, B., Ye, S., Yin, Z., Cao, J., Xiao, X. and Zhao, B. (2022) Catalytic Asymmetric alpha C(sp 3)-H Addition of Benzylamines to Aldehydes. Nature Catalysis, 5, 1061-1068. >https://doi.org/10.1038/s41929-022-00875-3 Ji, P., Liu, X., Xu, J., Zhang, X., Guo, J., Chen, W.W. and Zhao, B. (2022) Direct Asymmetric Alpha-C-H Addition of N-Unprotected Propargylic Amines to Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie International Edition, 61, e202206111. >https://doi.org/10.1002/anie.202206111 Chen, L., Luo, M.J., Zhu, F., Wen, W. and Guo, Q.X. (2019) Combining Chiral Aldehyde Catalysis and TransitionMetal Catalysis for Enantioselective α-Allylic Alkylation of Amino Acid Esters. Journal of the American Chemical Society, 141, 5159-5163. >https://doi.org/10.1021/jacs.9b01910 Liu, J.H., Wen, W., Liao, J., Shen, Q.W., Lin, Y., Wu, Z.L., Cai, T. and Guo, Q.X. (2022) Catalytic Asymmetric Tsuji-Trost α-Benzylation Reaction of N-Unprotected Amino Acids and Benzyl Alcohol Derivatives. Nature Communications, 13, Article No. 2509. >https://doi.org/10.1038/s41467-022-30277-9 Zhu, F., Li, C.X., Wu, Z.L., Cai, T., Wen, W. and Guo, Q.X. (2022) Chiral Aldehyde-Nickel Dual Catalysis Enables Asymmetric α-Propargylation of Amino Acids and Stereodivergent Synthesis of NP25302. Nature Communications, 13, Article No. 7290. >https://doi.org/10.1038/s41467-022-35062-2 Liu, J.H., Zhou, Q., Lin, Y., Wu, Z.L., Cai, T., Wen, W., Huang, Y.M. and Guo, Q.X. (2023) Modular Chiral-Aldehyde/Palladium Catalysis Enables Atom-Economical α-Allylation of N-Unprotected Amino Acid Esters with 1,3-Dienes and Allenes. ACS Catalysis, 13, 6013-6022. >https://doi.org/10.1021/acscatal.3c00790 Shen, Q.W., Wen, W. and Guo, Q.X. (2023) Chiral Aldehyde-Palladium Catalysis Enables Asymmetric Synthesis of α-Alkyl Tryptophans via Cascade Heck-Alkylation Reaction. Organic Letters, 17, 3163-3167. >https://doi.org/10.1021/acs.orglett.3c01119 Zhou, Q., Meng, W., Yang, J. and Du, H. (2018) A Continuously Regenerable Chiral Ammonia Borane for Asymmetric Transfer Hydrogenations. Angewandte Chemie International Edition, 57, 12111-12115. >https://doi.org/10.1002/anie.201806877 Chen, J., Gao, B., Feng, X., Meng, W. and Du, H. (2021) Relay Catalysis by Achiral Borane and Chiral Phosphoric Acid in the Metal-Free Asymmetric Hydrogenation of Chromones. Organic Letters, 23, 8565-8569. >https://doi.org/10.1021/acs.orglett.1c03286 Han, C., Meng, W., Feng, X. and Du, H. (2022) Asymmetric Intramolecular Hydroalkoxylation of 2-Vinylbenzyl Alcohols with Chiral Boro-Phosphates. Angewandte Chemie International Edition, 61, e202200100. >https://doi.org/10.1002/anie.202200100 Tian, J.J., Liu, N., Liu, Q.F., Sun, W. and Wang, X.C. (2021) Borane-Catalyzed Direct Asymmetric Vinylogous Mannich Reactions of Acyclic α,β-Unsaturated Ketones. Journal of the American Chemical Society, 143, 3054-3059. >https://doi.org/10.1021/jacs.1c00006 Zhang, M. and Wang, X.C. (2021) Bifunctional Borane Catalysis of a Hydride Transfer/Enantioselective [2+2] Cycloaddition Cascade. Angewandte Chemie International Edition, 60, 17185-17190. >https://doi.org/10.1002/anie.202106168 Zhang, Q.X., Li, Y., Wang, J., Yang, C., Liu, C.J., Li, X. and Cheng, J.P. (2020) B(C 6F 5) 3/Chiral Phosphoric Acid Catalyzed Ketimine-Ene Reaction of 2-Aryl-3H-Indol-3-Ones and α-Methylstyrenes. Angewandte Chemie International Edition, 59, 4550-4556. >https://doi.org/10.1002/anie.201915226 Song, J. and Zheng, W.H. (2023) Synthesis of a C 2-Symmetric Chiral Borinic Acid and Its Application in Catalytic Desymmetrization of 2,2-Disubstituted-1,3-Propanediols. Journal of the American Chemical Society, 145, 8338-8343. >https://doi.org/10.1021/jacs.3c02331
Baidu
map