Effects of Ti and C Elements on Microstructure and Properties of AlCu(NiCr) 2Mo High Entropy Alloy Cladding Layer
AlCu(NiCr) 2MoX (X = Ti, C, Ti and C) high-entropy alloy coatings were prepared on the surface of 45# steel substrate by TIG arc cladding technology and side-axis wire feeding. The effects of Ti and C elements on the microstructure and properties of AlCu(NiCr) 2Mo high-entropy alloy were investigated. The results show that the microstructure of AlCu(NiCr) 2Mo high-entropy alloy coating is composed of a single solid solution phase with face-centered cubic structure (FCC). After the addition of Ti and C elements, the coating structure is composed of FCC + BCC phase. The main diffraction peak position of the FCC phase is basically unchanged, but the diffraction peak intensity is reduced. At the same time, the wear rate of the coating is 97.43% lower than that of the AlCu(NiCr) 2Mo high-entropy alloy, and the average microhardness is increased to 687.81 HV 0.2and 543.08 HV 0.2. Ti and C elements are added at the same time, and the coating structure is composed of FCC + BCC + TiC phase. The wear rate of the coating is 98.53% lower than that of AlCu(NiCr) 2Mo high-entropy alloy, and the average microhardness is increased to 388.26 HV 0.2.
TIG Cladding
45#钢作为现代工业的基石原料,其因良好的机械性能和加工特性被广泛应用于机械、汽车、航空航天等领域
1) 复合热源的研究:高文杰等人
2) 复合工艺的研究:李雨等人
本研究采用自制的AlCu(NiCr)2MoX缆式焊丝,利用TIG熔覆技术和旁轴送丝的方式在45#钢基体表面制备了高熵合金熔覆层,并用XRD-7000X射线衍射仪、附带能谱仪的QUANTA FEG 450场发射扫描电子显微镜、HXD-1000TM数字式显微硬度计及HT-1000摩擦磨损试验机对高熵合金熔覆层的物相、微观组织结构、硬度及耐磨性进行表征和分析。
试验熔覆基材为45#钢,平均尺寸为5 mm × 100 mm × 100 mm,化学成分如
C |
Mn |
Si |
Ni |
Cr |
Cu |
S |
P |
Fe |
0.42~0.50 |
0.50~0.80 |
0.17~0.37 |
≤ 0.25 |
≤ 0.25 |
≤ 0.25 |
≤ 0.035 |
≤ 0.035 |
Bal. |
熔覆设备采用奥太WSME-630逆变式多功能弧焊机,焊接示意图和试验熔覆系统如
焊后用电火花线切割机从单道熔覆的合金熔覆层切下15 mm × 8 mm × 5 mm(熔宽方向×熔高方向×熔覆方向)的试样,依次用60#、120#、240#、400#、600#、800#、1000#、1200#、1500#、2000#的砂纸打磨,并用抛光机抛光至镜面无划痕,然后用附带能谱仪的QUANTA FEG 450场发射扫描电子显微镜进行微观组织与成分分析。
利用线切割沿熔覆方向切割试样并打磨,试样尺寸为15 mm × 5 mm × 5 mm(熔宽方向×熔高方向×熔覆方向),采用XRD-7000型的X射线衍射仪分析试样的物相组成,测试参数为:Cu靶Ka射线,电压40 kV,电流30 mA,扫描速度5˚/min,采样间距为0.02 deg,扫描范围为(2θ):20˚~100˚。
熔覆层截面的显微硬度测试所需试样与SEM测试所需试样一致,采用HXD-1000TM数字式显微硬度计对高熵合金熔覆层试样进行显微硬度测量。测量时从熔覆层余高顶端垂直向下每250 μm取一个点,熔覆层区测量10个点,基体区5个点,加载载荷200 kgf,加载时间15 s。
采用HT-1000摩擦磨损试验机测试不同高熵合金熔覆层试样的耐磨性,试样尺寸为20 mm × 15 mm × 5 mm(熔覆方向×熔宽方向×熔高方向),时间30 min,载荷1500 g,对磨材料Si3N4,摩擦半径3 mm,电机转速318 r/min。采用MT-500探针式材料表面磨痕测量仪测量试样的磨损截面面积,每120˚取一个探测位,每个试样测量三次取平均值,根据公式
(1)
式中,V (mm3)为磨损体积,可通过公式 得到,A为磨损截面面积,r为摩擦半径;L (m)为摩擦总路程,P (N)为所施载荷。
Alloy |
区域 |
Al |
Cu |
Ni |
Cr |
Mo |
Ti |
C |
AlCu(NiCr)2Mo |
A |
2.8 |
2.1 |
16.9 |
21.2 |
56.9 |
||
B |
17.3 |
26.4 |
41.8 |
10.2 |
4.3 |
|||
C |
30.3 |
27.3 |
37.3 |
3.9 |
1.2 |
|||
全域 |
14.2 |
20.6 |
32.5 |
12.8 |
19.9 |
|||
AlCu(NiCr)2MoTi |
D |
3.4 |
2.9 |
14.9 |
20.4 |
45.9 |
12.4 |
|
E |
14.7 |
15.5 |
30.2 |
15.9 |
10.1 |
13.6 |
||
F |
23.0 |
14.2 |
38.6 |
2.3 |
1.7 |
20.3 |
||
全域 |
12.5 |
19.6 |
29.5 |
9.7 |
13.1 |
15.6 |
||
AlCu(NiCr)2MoC |
G |
0 |
0.2 |
1.0 |
7.6 |
23.1 |
68.1 |
|
H |
5.2 |
4.3 |
15.8 |
7.9 |
3.7 |
63.1 |
||
全域 |
3.1 |
3.1 |
10.4 |
7.7 |
10.6 |
65.1 |
||
AlCu(NiCr)2MoTiC |
I |
0.3 |
0.7 |
1.4 |
10.4 |
19.3 |
0.6 |
67.3 |
J |
9.0 |
12.9 |
19.0 |
5.4 |
2.8 |
0.1 |
50.9 |
|
K |
0.1 |
0 |
0.1 |
0.4 |
9.4 |
22.9 |
67.1 |
|
全域 |
3.6 |
6.3 |
10.3 |
4.1 |
6.4 |
6.8 |
62.5 |
Alloy |
S1 |
S2 |
S3 |
S4 |
Average wear interface area A/mm2 |
0.0816 |
0.0021 |
0.0021 |
0.0012 |
Alloy |
S1 |
S2 |
S3 |
S4 |
Average Microhardness/HV0.2 |
370.98 |
687.81 |
543.08 |
388.26 |
1) AlCu (NiCr)2Mo高熵合金熔覆层组织由FCC相组成,分别加入Ti或C元素后,熔覆层组织由FCC相转变为FCC + BCC相。Ti和C元素同时加入,熔覆层组织转变为FCC + BCC + TiC相。BCC相和TiC的存在增加了其强度和耐磨性。
2) 高熵合金熔覆层的平均摩擦系数在0.263~0.565之间,且摩擦系数在15分钟后变得较为平稳。Ti或C元素的加入使得AlCu(NiCr)2MoTi和AlCu(NiCr)2MoC高熵合金熔覆层表面的磨损率相比AlCu(NiCr)2Mo减少97.43%,AlCu(NiCr)2MoTiC高熵合金熔覆层表面的磨损率相比AlCu(NiCr)2Mo减少98.53%。熔覆层磨损表面出现了由粘着磨损、磨粒磨损和疲劳磨损引起的不同程度的熔覆层剥落、犁沟划痕和撕裂。
3) AlCu(NiCr)2Mo高熵合金熔覆层的平均显微硬度为370.98 HV0.2,加入Ti或C元素后,熔覆层的平均显微硬度显著提高至687.81 HV0.2和543.08 HV0.2,AlCu(NiCr)2MoTiC熔覆层的平均显微硬度也有所提升。
国家自然科学基金(52075235),甘肃省科技计划项目(2022JR5RA314,22YF7WA151,22YF7GA138,23CXGA0151),甘肃省教育厅产业支撑计划项目(2022CYZC-31)和甘肃省科协创新驱动力工程项目(GXH20230817-10)。