References
Parada, C.A., De Oliveira, I.P., Gewehr, M.C.F., Machado-Neto, J.A., Lima, K., Eichler, R.A.S., et al. (2022) Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Cells, 11, Article 385. >https://doi.org/10.3390/cells11030385
Dikic, I. and Elazar, Z. (2018) Mechanism and Medical Implications of Mammalian Autophagy. Nature Reviews Molecular Cell Biology, 19, 349-364. >https://doi.org/10.1038/s41580-018-0003-4
Lopes, V.R., Loitto, V., Audinot, J., Bayat, N., Gutleb, A.C. and Cristobal, S. (2016) Dose-Dependent Autophagic Effect of Titanium Dioxide Nanoparticles in Human Hacat Cells at Non-Cytotoxic Levels. Journal of Nanobiotechnology, 14, Article No. 22. >https://doi.org/10.1186/s12951-016-0174-0
Wang, N., Wei, L., Liu, D., Zhang, Q., Xia, X., Ding, L., et al. (2022) Identification and Validation of Autophagy-Related Genes in Diabetic Retinopathy. Frontiers in Endocrinology, 13, Article 867600. >https://doi.org/10.3389/fendo.2022.867600
Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Disease. Cell, 132, 27-42. >https://doi.org/10.1016/j.cell.2007.12.018
Rabinowitz, J.D. and White, E. (2010) Autophagy and Metabolism. Science, 330, 1344-1348. >https://doi.org/10.1126/science.1193497
Klionsky, D.J. (2007) Autophagy: From Phenomenology to Molecular Understanding in Less than a Decade. Nature Reviews Molecular Cell Biology, 8, 931-937. >https://doi.org/10.1038/nrm2245
Nakatogawa, H., Suzuki, K., Kamada, Y. and Ohsumi, Y. (2009) Dynamics and Diversity in Autophagy Mechanisms: Lessons from Yeast. Nature Reviews Molecular Cell Biology, 10, 458-467. >https://doi.org/10.1038/nrm2708
Li, X., He, S. and Ma, B. (2020) Autophagy and Autophagy-Related Proteins in Cancer. Molecular Cancer, 19, Article No. 12 >https://doi.org/10.1186/s12943-020-1138-4
Mizushima, N. (2007) Autophagy: Process and Function. Genes&Development, 21, 2861-2873. >https://doi.org/10.1101/gad.1599207
Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., et al. (2000) A Ubiquitin-Like System Mediates Protein Lipidation. Nature, 408, 488-492. >https://doi.org/10.1038/35044114
Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., et al. (2013) Autophagosomes Form at ER-Mitochondria Contact Sites. Nature, 495, 389-393. >https://doi.org/10.1038/nature11910
Rogov, V., Dötsch, V., Johansen, T. and Kirkin, V. (2014) Interactions between Autophagy Receptors and Ubiquitin-Like Proteins Form the Molecular Basis for Selective Autophagy. Molecular Cell, 53, 167-178. >https://doi.org/10.1016/j.molcel.2013.12.014
Lu, K., Psakhye, I. and Jentsch, S. (2014) Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family. Cell, 158, 549-563. >https://doi.org/10.1016/j.cell.2014.05.048
White, E. and DiPaola, R.S. (2009) The Double-Edged Sword of Autophagy Modulation in Cancer. Clinical Cancer Research, 15, 5308-5316. >https://doi.org/10.1158/1078-0432.ccr-07-5023
Jin, S. and White, E. (2007) Role of Autophagy in Cancer: Management of Metabolic Stress. Autophagy, 3, 28-31. >https://doi.org/10.4161/auto.3269
White, E. (2012) Deconvoluting the Context-Dependent Role for Autophagy in Cancer. Nature Reviews Cancer, 12, 401-410. >https://doi.org/10.1038/nrc3262
Galluzzi, L., Pietrocola, F., Bravo-San Pedro, J.M., Amaravadi, R.K., Baehrecke, E.H., Cecconi, F., et al. (2015) Autophagy in Malignant Transformation and Cancer Progression. The EMBO Journal, 34, 856-880. >https://doi.org/10.15252/embj.201490784
Li, Z., Chen, B., Wu, Y., Jin, F., Xia, Y. and Liu, X. (2010) Genetic and Epigenetic Silencing of the Beclin 1 Gene in Sporadic Breast Tumors. BMC Cancer, 10, Article No. 98. >https://doi.org/10.1186/1471-2407-10-98
Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., et al. (2003) Promotion of Tumorigenesis by Heterozygous Disruption of the Beclin 1 Autophagy Gene. Journal of Clinical Investigation, 112, 1809-1820. >https://doi.org/10.1172/jci20039
Kang, M.R., Kim, M.S., Oh, J.E., Kim, Y.R., Song, S.Y., Kim, S.S., et al. (2009) Frameshift Mutations of Autophag Related Genes ATG2B, ATG5, ATG9B and ATG12 in Gastric and Colorectal Cancers with Microsatellite Instability. The Journal of Pathology, 217, 702-706. >https://doi.org/10.1002/path.2509
Wible, D.J., Chao, H., Tang, D.G. and Bratton, S.B. (2019) ATG5 Cancer Mutations and Alternative mRNA Splicing Reveal a Conjugation Switch That Regulates ATG12-ATG5-ATG16L1 Complex Assembly and Autophagy. Cell Discovery, 5, Article No. 42. >https://doi.org/10.1038/s41421-019-0110-1
Tsukamoto, S., Kuma, A., Murakami, M., Kishi, C., Yamamoto, A. and Mizushima, N. (2008) Autophagy Is Essential for Preimplantation Development of Mouse Embryos. Science, 321, 117-120. >https://doi.org/10.1126/science.1154822
Kocaturk, N.M., Akkoc, Y., Kig, C., Bayraktar, O., Gozuacik, D. and Kutlu, O. (2019) Autophagy as a Molecular Target for Cancer Treatment. European Journal of Pharmaceutical Sciences, 134, 116-137. >https://doi.org/10.1016/j.ejps.2019.04.011
Wei, H., Wei, S., Gan, B., Peng, X., Zou, W. and Guan, J. (2011) Suppression of Autophagy by FIP200 Deletion Inhibits Mammary Tumorigenesis. Genes&Development, 25, 1510-1527. >https://doi.org/10.1101/gad.2051011
Gong, C., Bauvy, C., Tonelli, G., Yue, W., Deloménie, C., Nicolas, V., et al. (2012) Beclin 1 and Autophagy Are Required for the Tumorigenicity of Breast Cancer Stem-Like/Progenitor Cells. Oncogene, 32, 2261-2272. >https://doi.org/10.1038/onc.2012.252
Yue, W., Hamaï, A., Tonelli, G., Bauvy, C., Nicolas, V., Tharinger, H., et al. (2013) Inhibition of the Autophagic Flux by Salinomycin in Breast Cancer Stem-Like/Progenitor Cells Interferes with Their Maintenance. Autophagy, 9, 714-729. >https://doi.org/10.4161/auto.23997
Jin, M., Liu, X., Wu, Y., Lou, Y., Li, X. and Huang, G. (2022) Circular RNA EPB41 Expression Predicts Unfavorable Prognoses in NSCLC by Regulating mIR-486-3p/eIF5A Axis-Mediated Stemness. Cancer Cell International, 22, Article No. 219. >https://doi.org/10.1186/s12935-022-02618-7
Boya, P., Codogno, P. and Rodriguez-Muela, N. (2018) Autophagy in Stem Cells: Repair, Remodelling and Metabolic Reprogramming. Development, 145, dev146506. >https://doi.org/10.1242/dev.146506
Auberger, P. and Puissant, A. (2017) Autophagy, a Key Mechanism of Oncogenesis and Resistance in Leukemia. Blood, 129, 547-552. >https://doi.org/10.1182/blood-2016-07-692707
Bortnik, S. and Gorski, S.M. (2017) Clinical Applications of Autophagy Proteins in Cancer: from Potential Targets to Biomarkers. International Journal of Molecular Sciences, 18, Article 1496. >https://doi.org/10.3390/ijms18071496
Mo, S., Dai, W., Xiang, W., Li, Y., Feng, Y., Zhang, L., et al. (2019) Prognostic and Predictive Value of an Autophagy-Related Signature for Early Relapse in Stages I-III Colon Cancer. Carcinogenesis, 40, 861-870. >https://doi.org/10.1093/carcin/bgz031
Kimmelman, A.C. and White, E. (2017) Autophagy and Tumor Metabolism. Cell Metabolism, 25, 1037-1043. >https://doi.org/10.1016/j.cmet.2017.04.004
Katheder, N.S., Khezri, R., O’Farrell, F., Schultz, S.W., Jain, A., Rahman, M.M., et al. (2017) Microenvironmental Autophagy Promotes Tumour Growth. Nature, 541, 417-420. >https://doi.org/10.1038/nature20815
Katheder, N.S. and Rusten, T.E. (2017) Microenvironment and Tumors—A Nurturing Relationship. Autophagy, 13, 1241-1243. >https://doi.org/10.1080/15548627.2017.1310361
Shen, Z., Qin, L., Xu, T., Xia, L., Wang, X., Zhang, X., et al. (2016) Chloroquine Enhances the Efficacy of Cisplatin by Suppressing Autophagy in Human Adrenocortical Carcinoma Treatment. Drug Design, Development and Therapy, 10, 1035-1045. >https://doi.org/10.2147/dddt.s101701
Gong, C., Hu, C., Gu, F., Xia, Q., Yao, C., Zhang, L., et al. (2017) Co-Delivery of Autophagy Inhibitor ATG7 siRNA and Docetaxel for Breast Cancer Treatment. Journal of Controlled Release, 266, 272-286. >https://doi.org/10.1016/j.jconrel.2017.09.042
Eng, C.H., Wang, Z., Tkach, D., Toral-Barza, L., Ugwonali, S., Liu, S., et al. (2015) Macroautophagy Is Dispensable for Growth of KRAS Mutant Tumors and Chloroquine Efficacy. Proceedings of the National Academy of Sciences, 113, 182-187. >https://doi.org/10.1073/pnas.1515617113
Karsli-Uzunbas, G., Guo, J.Y., Price, S., Teng, X., Laddha, S.V., Khor, S., et al. (2014) Autophagy Is Required for Glucose Homeostasis and Lung Tumor Maintenance. Cancer Discovery, 4, 914-927. >https://doi.org/10.1158/2159-8290.cd-14-0363
Napolitano, G., Johnson, J.L., He, J., Rocca, C.J., Monfregola, J., Pestonjamasp, K., et al. (2015) Impairment of Chaperone-Mediated Autophagy Leads to Selective Lysosomal Degradation Defects in the Lysosomal Storage Disease Cystinosis. EMBO Molecular Medicine, 7, 158-174. >https://doi.org/10.15252/emmm.201404223
Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., et al. (2006) Autophagy Promotes Tumor Cell Survival and Restricts Necrosis, Inflammation, and Tumorigenesis. Cancer Cell, 10, 51-64. >https://doi.org/10.1016/j.ccr.2006.06.001
Choi, A.M.K., Ryter, S.W. and Levine, B. (2013) Autophagy in Human Health and Disease. New England Journal of Medicine, 368, 651-662. >https://doi.org/10.1056/nejmra1205406
Li, Y., Huang, J., Pang, S., Wang, H., Zhang, A., Hawley, R.G., et al. (2017) Novel and Functional ATG12 Gene Variants in Sporadic Parkinson’s Disease. Neuroscience Letters, 643, 22-26. >https://doi.org/10.1016/j.neulet.2017.02.028
Friedman, L.G., Lachenmayer, M.L., Wang, J., He, L., Poulose, S.M., Komatsu, M., et al. (2012) Disrupted Autophagy Leads to Dopaminergic Axon and Dendrite Degeneration and Promotes Presynaptic Accumulation of α-Synuclein and LRRK2 in the Brain. The Journal of Neuroscience, 32, 7585-7593. >https://doi.org/10.1523/jneurosci.5809-11.2012
Sliter, D.A., Martinez, J., Hao, L., Chen, X., Sun, N., Fischer, T.D., et al. (2018) Parkin and Pink1 Mitigate Sting-Induced Inflammation. Nature, 561, 258-262. >https://doi.org/10.1038/s41586-018-0448-9
Huang, J. and Klionsky, D.J. (2007) Autophagy and Human Disease. Cell Cycle, 6, 1837-1849. >https://doi.org/10.4161/cc.6.15.4511
Wang, Y., Martinez-Vicente, M., Krüger, U., Kaushik, S., Wong, E., Mandelkow, E., et al. (2010) Synergy and Antagonism of Macroautophagy and Chaperone-Mediated Autophagy in a Cell Model of Pathological Tau Aggregation. Autophagy, 6, 182-183. >https://doi.org/10.4161/auto.6.1.10815
Sorrentino, V., Romani, M., Mouchiroud, L., Beck, J.S., Zhang, H., D’Amico, D., et al. (2017) Enhancing Mitochondrial Proteostasis Reduces Amyloid-β Proteotoxicity. Nature, 552, 187-193. >https://doi.org/10.1038/nature25143
Fang, E.F., Hou, Y., Palikaras, K., Adriaanse, B.A., Kerr, J.S., Yang, B., et al. (2019) Mitophagy Inhibits Amyloid-β and Tau Pathology and Reverses Cognitive Deficits in Models of Alzheimer’s Disease. Nature Neuroscience, 22, 401-412. >https://doi.org/10.1038/s41593-018-0332-9
Wild, E.J. and Tabrizi, S.J. (2014) Targets for Future Clinical Trials in Huntington’s Disease: What’s in the Pipeline? Movement Disorders, 29, 1434-1445. >https://doi.org/10.1002/mds.26007
Qi, L., Zhang, X., Wu, J., Lin, F., Wang, J., DiFiglia, M., et al. (2012) The Role of Chaperone-Mediated Autophagy in Huntingtin Degradation. PLOS ONE, 7, e46834. >https://doi.org/10.1371/journal.pone.0046834
Bauer, P.O., Goswami, A., Wong, H.K., Okuno, M., Kurosawa, M., Yamada, M., et al. (2010) Harnessing Chaperone-Mediated Autophagy for the Selective Degradation of Mutant Huntingtin Protein. Nature Biotechnology, 28, 256-263. >https://doi.org/10.1038/nbt.1608
Li, Z., Wang, C., Wang, Z., Zhu, C., Li, J., Sha, T., et al. (2019) Allele-Selective Lowering of Mutant HTT Protein by HTT-LC3 Linker Compounds. Nature, 575, 203-209. >https://doi.org/10.1038/s41586-019-1722-1
Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., et al. (2006) Suppression of Basal Autophagy in Neural Cells Causes Neurodegenerative Disease in Mice. Nature, 441, 885-889. >https://doi.org/10.1038/nature04724