表3
给出了在固支条件下,FGM微圆板取不同的梯度指数时,本文与文献结果对比发现,DTM的计算结果也与文献结果
[20]
相吻合,进一步验证了DTM求解的正确性。其中
,
,
,
,
,
,
。
Table 3. Comparison of dimensionless natural frequencies of FGM circular plates with different gradient indices with clamped support conditionsTable 3. Comparison of dimensionless natural frequencies of FGM circular plates with different gradient indices with clamped support conditions 表3. 固支条件下不同梯度指数对FGM圆板无量纲固有频率的对比
n
0
0.1
0.5
1
2
5
1
文献
[20]
10.216
9.851
8.973
8.5
8.125
7.576
本文解
10.215
9.85
8.971
8.498
8.123
7.573
误差%
0.01
0.01
0.22
0.23
0.24
0.3
2
文献
[20]
39.773
38.352
34.933
33.093
31.634
29.496
本文解
39.771
38.349
34.928
32.8417
31.626
29.485
误差%
0.005
0.008
0.01
0.01
0.02
0.09
图2
和
图3
为多孔FGM微圆板在固支(C)边界下,当
,
,
,
时,梯度指数增加对无量纲前三阶固有频率Ω之间的影响曲线。可以看出当厚度半径比,温升值,材料尺度参数,孔隙率取特定值时,随着梯度指数n的增加,多孔FGM微圆板的无量纲固有频率Ω逐渐下降,当n在小于1时,无量纲固有频率减小的波动很剧烈,当n在大于1时,无量纲频率变化相较缓慢,后趋近于收敛。这也合理解释了FGM中陶瓷材料向金属材料过渡的特性,以功能梯度的形式在变化。
Figure 2. Effect of gradient index on the first three orders dimensionless natural frequencies under uniform temperature rise图2. 均匀升温下梯度指数对无量纲前三阶固有频率的影响图2. 均匀升温下梯度指数对无量纲前三阶固有频率的影响
Figure 3. Effect of gradient index on the first three orders dimensionless natural frequencies under linear temperature rise图3. 线性升温下梯度指数对无量纲前三阶固有频率的影响图3. 线性升温下梯度指数对无量纲前三阶固有频率的影响
Figure 4. Effect of porosity on the first three orders dimensionless natural frequencies under uniform temperature rise图4. 均匀升温下孔隙率对无量纲前三阶固有频率的影响图4. 均匀升温下孔隙率对无量纲前三阶固有频率的影响
Figure 5. Effect of porosity on dimensionless first three orders dimensionless natural frequencies under linear temperature rise图5. 线性升温下孔隙率对无量纲前三阶固有频率的影响图5. 线性升温下孔隙率对无量纲前三阶固有频率的影响
Figure 6. Effect of h/l on the first three orders dimensionless natural frequencies at uniform temperature rise图6. 均匀升温下h/l对无量纲前三阶固有频率的影响图6. 均匀升温下h/l对无量纲前三阶固有频率的影响
Figure 7. Effect on h/l the first three orders dimensionless natural frequencies under linear temperature rise图7. 线性升温下h/l对无量纲前三阶固有频率的影响图7. 线性升温下h/l对无量纲前三阶固有频率的影响
图4
和
图5
为多孔FGM微圆板在固支(C)边界下,当
,
,
,
时,孔隙率β增加对无量纲前三阶固有频率Ω之间的影响曲线。可以看出随着孔隙率β的增加,多孔功能梯度材料微圆板的无量纲频率在缓慢增大,是因为孔隙的存在削弱了FGM圆板的整体刚度,但也降低了等效质量,此时质量的弱化强于刚度弱化的缘故。
图6
和
图7
为多孔FGM微圆板在固支(C)边界下,当
,
,
,
时,h/l增加对无量纲前三阶固有频率Ω之间的影响曲线。当厚度半径比,温升值,梯度指数,孔隙率取特定值时,可以看出固有频率Ω随着h/l增大而逐渐减小。得到随着材料尺度参数的增加,无量纲固有频率在增大。
Figure 8. Effect of uniform temperature rise ( ) on the first three orders dimensionless natural frequencies图8. 均匀升温( )对前三阶无量纲固有频率的影响图8. 均匀升温(
)对前三阶无量纲固有频率的影响
Figure 9. Effect of linear temperature rise ( ) on the first three orders dimensionless natural frequencies图9. 线性升温( )对前三阶无量纲固有频率的影响图9. 线性升温(
)对前三阶无量纲固有频率的影响
Figure 10. Effect of nonlinear temperature rise ( ) on the first three orders dimensionless natural frequencies图10. 非线性升温( )对前三阶无量纲固有频率的影响图10. 非线性升温(
)对前三阶无量纲固有频率的影响
图8
、
图9
和
图10
为多孔FGM微圆板在固支(C)边界下,当
,
,
,
时,不同升温方式时,温度增加对无量纲前三阶固有频率Ω之间的影响曲线。当厚度半径比,材料尺度参数,梯度指数,孔隙率取特定值时,可以看出固有频率随着温度的增大而逐渐减小。比较发现,可以得到当温度指数变大时,无量纲固有频率下降的较慢。
5. 结论
本文基于经典板和修正偶应力理论,利用Hamilton原理推导出了含有材料尺度参数的多孔FGM微圆板自由振动的控制微分方程。通过使用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到了计算无量纲固有频率代数特征方程,计算分析了梯度指数、孔隙率、不同升温方式、材料长度尺度参数对多孔FGM微圆板无量纲固有频率的影响。主要结论如下:
1) 随着梯度指数n的增加,多孔FGM微圆板的无量纲固有频率Ω逐渐下降,这类现象合理的解释了FGM中陶瓷材料向金属材料过渡的特性。2) 随着孔隙率β的增大,多孔FGM微圆板的无量纲频率在逐渐增大,是因为孔隙的存在削弱了FGM圆板的整体刚度,但也降低了等效质量,此时质量的弱化强于刚度弱化的缘故。3) 随着材料尺度参数的增大,多孔FGM微圆板的无量纲频率在逐渐增大,材料长度尺度参数对固有频率有增加作用。然而随着温度的增大,多孔FGM微圆板的无量纲频率在逐渐减小。
NOTES*通讯作者。
References
马涛, 赵忠民, 刘良祥, 等. 功能梯度材料的研究进展及应用前景[J]. 化工科技, 2012, 20(1): 71-75.
Bever, M.B. and Shen, M. (1974) The Morphology of Polymeric Alloys. Materials Science Engineering, 15, 145-157.>https://doi.org/10.1016/0025-5416(74)90046-9
Jun, T. (2012) Development and Application of Functionally Gradient Materials. Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering, Xi’an, 23-25 August 2012, 1022-1025.
Narayan, R.J., Hobbs, L.W., Jin, C. and Rabiei, A. (2006) The Use of Functionally Gradient Materials in Medicine. Journal of Materials Science: Materials in Medicine, 58, 52-56. >https://doi.org/10.1007/s11837-006-0142-5
Reddy, J.N. and Chin, C.D. (1998) Thermomechanical Analysis of Functionally Graded Cylinders and Plates. Journal of Thermal Stresses, 21, 593-626. >https://doi.org/10.1080/01495739808956165
Pandey, P.M., Rathee, S., Srivastava, M. and Jain, P.K., Eds. (2021) Functionally Graded Materials (FGMs): Fabrication, Properties, Applications, and Advancements. CRC Press, Boca Raton. >https://doi.org/10.1201/9781003097976
Shen, H.S. (2009) Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC Press, Boca Raton.
Ebrahimi, F. and Jafari, A. (2017) A Four-Variable Refined Shear-Deformation Beam Theory for Thermo-Mechanical Vibration Analysis of Temperature-Dependent FGM Beams with Porosities. Mechanics of Advanced Materials and Structures, 25, 212-224. >https://doi.org/10.1080/15376494.2016.1255820
苏盛开, 黄怀纬. 多孔功能梯度梁的热-力耦合屈曲行为[J]. 复合材料学报, 2017, 37(12): 2794-2799.
Daikh, A.A. and Zenkour, A.M. (2019) Free Vibration and Buckling of Porous Power-Law and Sigmoid Functionally Graded Sandwich Plates Using a Simple Higher-Order Shear Deformation Theory. Materials Research Express, 6, Article 115707. >https://doi.org/10.1088/2053-1591/ab48a9
Nguyen, L.B., Nguyen-Xuan, H., Thai, C.H. and Phung-Van, P. (2023) A Size-Dependent Effect of Smart Functionally Graded Piezoelectric Porous Nanoscale Plates. International Journal of Mechanics and Materials in Design, 19, 817-830. >https://doi.org/10.1007/s10999-023-09660-x
Mirzaei, S., Hejazi, M. and Ansari, R. (2023) Isogeometric Analysis of Small-Scale Effects on the Vibration of Functionally Graded Porous Curved Microbeams Based on the Modified Strain Gradient Elasticity Theory. Acta Mechanica, 234, 4535-4557. >https://doi.org/10.1007/s00707-023-03616-0
Teng, Z.C., Wang, W.B. and Gu, C.L. (2022) Free Vibration and Buckling Characteristics of Porous Functionally Graded Materials (FGMs) Micro-Beams Based on the Modified Couple Stress Theory. Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 102, e202100219.>https://doi.org/10.1002/zamm.202100219
Akbaş, S.D., Doğuşcan, Ş., Akgöz, B., et al. (2022) Dynamic Analysis of Functionally Graded Porous Microbeams under Moving Load. Transport in Porous Media, 142, 209-227. >https://doi.org/10.1007/s11242-021-01686-z
Rezaei, M., Khorshidvand, R.A., Khorsandijou, M.S. and Jabbari, M. (2023) Parametric Study for Modified Couple Stress Theory on Postbuckling of Size-Dependent FG Saturated Porous Mindlin Microplates. Physica Scripta, 98, Article 065958. >https://doi.org/10.1088/1402-4896/acd6c3
Rahmani, A., Faroughi, S. and Friswell, M.I. (2020) The Vibration of Two-Dimensional Imperfect Functionally Graded (2D-FG) Porous Rotating Nanobeams Based on General Nonlocal Theory. Mechanical Systems and Signal Processing, 144, Article 106854. >https://doi.org/10.1016/j.ymssp.2020.106854
Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019) A Finite Element Model for the Thermo-Elastic Analysis of Functionally Graded Porous Nanobeams. European Journal of Mechanics-A/Solids, 77, Article 103767.>https://doi.org/10.1016/j.euromechsol.2019.04.002
Reddy, J.N. and Berry, J. (2012) Nonlinear Theories of Axisymmetric Bending of Functionally Graded Circular Plates with Modified Couple Stress. Composite Structures, 94, 3664-3668. >https://doi.org/10.1016/j.compstruct.2012.04.019
Wu, T.Y., Wang, Y.Y. and Liu, G.R. (2002) Free Vibration Analysis of Circular Plates Using Generalized Differential Quadrature Rule. Computer Methods in Applied Mechanics and Engineering, 191, 5365-5380.>https://doi.org/10.1016/S0045-7825(02)00463-2
Pradhan, K.K. and Chakraverty, S. (2015) Free Vibration of Functionally Graded Thin Elliptic Plates with Various Edge Supports. Structural Engineering and Mechanics, 53, 337-354. >https://doi.org/10.12989/sem.2015.53.2.337