高胰岛素血症及胰岛素抵抗是2型糖尿病和肥胖的主要代谢特征,可由遗传和生活方式等因素导致。二者在部分癌症的发生发展过程中可能起重要促进作用。本文就高胰岛素血症和胰岛素抵抗的关系,和所涉及的部分通路以及两者对其它癌症的影响进行综述,为研发新型缓解药物提供依据。 Hyperinsulinemia and insulin resistance are the main metabolic features of type 2 diabetes and obesity, which can be caused by genetic and lifestyle factors. The two may play an important role in the occurrence and development of some cancers. This article reviews the relationship between hyperinsulinemia and insulin resistance, some of the pathways involved, and the effects of the two on other cancers, so as to provide a basis for the development of new remission-seeking drugs.
高胰岛素血症,胰岛素抵抗,NOS,cAMP-PKA,PI3K-PKB(Akt), Hyperinsulinemia
Insulin Resistance
NOS
cAMP-PKA
PI3K-PKB (Akt)
摘要
Hyperinsulinemia and insulin resistance are the main metabolic features of type 2 diabetes and obesity, which can be caused by genetic and lifestyle factors. The two may play an important role in the occurrence and development of some cancers. This article reviews the relationship between hyperinsulinemia and insulin resistance, some of the pathways involved, and the effects of the two on other cancers, so as to provide a basis for the development of new remission-seeking drugs.
黎玉婷,林显光,李臣鸿. 高胰岛素血症及胰岛素抵抗的研究进展Research Progress on Hyperinsulinemia and Insulin Resistance[J]. 生物医学, 2024, 14(03): 353-358. https://doi.org/10.12677/hjbm.2024.143039
参考文献References
Freeman, A.M. and Pennings, N. (2021) Insulin Resistance. StatPearls, Treasure Island.
Gallagher, E.J. and LeRoith, D. (2020) Hyperinsulinaemia in Cancer. Nature Reviews Cancer, 20, 629-644. https://doi.org/10.1038/s41568-020-0295-5
李珊珊, 赵钰岚. 胰岛素抵抗及高胰岛素血症促进胰腺癌发生的研究进展[J]. 预防医学, 2021, 33(11), 1122-1125, 1129. https://doi.org/10.19485/j.cnki.issn2096-5087.2021.11.010
Thomas, D.D., Corkey, B.E., Istfan, N.W., et al. (2019) Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. Journal of the Endocrine Society, 3, 1727-1747. https://doi.org/10.1210/js.2019-00065
Rose, D.P., Gracheck, P.J. and Vona-Davis, L. (2015) The Interactions of Obesity, Inflammation and Insulin Resistance in Breast Cancer. Cancers, 7, 2147-2168. https://doi.org/10.3390/cancers7040883
Newton. C.A. and Raskin, P. (2004) Diabetic Ketoacidosis in Type 1 and Type 2 Diabetes Mellitus: Clinical and Biochemical Differences. Archives of Internal Medicine, 164, 1925-1931. https://doi.org/10.1001/archinte.164.17.1925
Fujita, N., Aono, S., Karasaki, K., et al. (2018) Changes in Lipid Metabolism and Capillary Density of the Skeletal Muscle Following Low-Intensity Exercise Training in a Rat Model of Obesity with Hyperinsulinemia. PLOS ONE, 13, e0196895. https://doi.org/10.1371/journal.pone.0196895
Huang, S., Ma, S., Ning, M., et al. (2019) TGR5 Agonist Ameliorates Insulin Resistance in Skeletal Muscles and Improves Glucose Homeostasis in Diabetic Mice. Metabolism, 99, 45-56. https://doi.org/10.1016/j.metabol.2019.07.003
Page, M.M. and Johnson, J.D. (2018) Mild Suppression of Hyperinsulinemia to Treat Obesity and Insulin Resistance. Trends in Endocrinology & Metabolism, 29, 389-399. https://doi.org/10.1016/j.tem.2018.03.018
Manco., M., Nolfe., G., Pataky., Z., et al. (2017) Shape of the OGTT Glucose Curve and Risk of Impaired Glucose Metabolism in the EGIR-RISC Cohort. Metabolism: Clinical and Experimental, 70, 42-50. https://doi.org/10.1016/j.metabol.2017.02.007
Hall, C., Yu, H. and Choi, E. (2020) Insulin Receptor Endocytosis in the Pathophysiology of Insulin Resistance. Experimental & Molecular Medicine, 52, 911-920. https://doi.org/10.1038/s12276-020-0456-3
Pinkney, J.H., Stehouwer, C.D., Coppack, S.W., et al. (1997) Endothelial Dysfunction: Cause of the Insulin Resistance Syndrome. Diabetes, 46, S9-S13. https://doi.org/10.2337/diab.46.2.S9
Ashcroft, F.M., Harrison, D.E. and Ashcroft, S.J. (1984) Glucose Induces Closure of Single Potassium Channels in Isolated Rat Pancreatic β-Cells. Nature, 312, 446-448. https://doi.org/10.1038/312446a0
翟中和, 王喜忠, 丁明孝. 细胞生物学[M]. 北京: 高等教育出版社, 2011: 170-180.
Liu, R., Guan, S., Gao, Z., et al. (2021) Pathological Hyperinsulinemia and Hyperglycemia in the Impaired Glucose Tolerance Stage Mediate Endothelial Dysfunction through MiR-21, PTEN/AKT/ENOS, and MARK/ET-1 Pathways. Frontiers in Endocrinology, 12, Article 644159. https://doi.org/10.3389/fendo.2021.644159
Li, Z., Feng, P.P., Zhao, Z.B., et al. (2019) Liraglutide Protects against Inflammatory Stress in Non-Alcoholic Fatty Liver by Modulating Kupffer Cells M2 Polarization via CAMP-PKA-STAT3 Signaling Pathway. Biochemical and Biophysical Research Communications, 510, 20-26. https://doi.org/10.1016/j.bbrc.2018.12.149
Akerstrom, T., Goldman, D., Nilsson, F., et al. (2020) Hyperinsulinemia Does Not Cause de Novo Capillary Recruitment in Rat Skeletal Muscle. Microcirculation, 27, e12593. https://doi.org/10.1111/micc.12593
Jeon, J.Y., Choi, S.E., Ha, E.S., et al. (2019) GLP1 Improves Palmitate-Induced Insulin Resistance in Human Skeletal Muscle via SIRT1 Activity. International Journal of Molecular Medicine, 44, 1161-1171. https://doi.org/10.3892/ijmm.2019.4272
Holman, G.D. (2020) Structure, Function and Regulation of Mammalian Glucose Transporters of the SLC2 Family. Pflügers Archiv—European Journal of Physiology, 472, 1155-1175. https://doi.org/10.1007/s00424-020-02411-3
Gao, Z., Song, G.Y., Ren, L.P., et al. (2020) β-Catenin Mediates the Effect of GLP-1 Receptor Agonist on Ameliorating Hepatic Steatosis Induced by High Fructose Diet. European Journal of Histochemistry, 64, 225-233. https://doi.org/10.4081/ejh.2020.3160
Li, H., Cao, L., Ren, Y., et al. (2018) GLP-1 Receptor Regulates Cell Growth through Regulating IDE Expression Level in Aβ1-42-Treated PC12 Cells. Bioscience Reports, 38, BSR20171284. https://doi.org/10.1042/BSR20171284
Guilherme, A., Henriques, F., Bedard, A.H., et al. (2019) Molecular Pathways Linking Adipose Innervation to Insulin Action in Obesity and Diabetes Mellitus. Nature Reviews Endocrinology, 15, 207-225. https://doi.org/10.1038/s41574-019-0165-y
Lee, C.L. and Kuo, H.C. (2017) Pathophysiology of Benign Prostate Enlargement and Lower Urinary Tract Symptoms: Current Concepts. TzuChi Medical Journal, 29, 79-83. https://doi.org/10.4103/tcmj.tcmj_20_17
Cen, H.H., Botezelli, J.D., Wang, S., et al. (2021) Transcriptomic Analysis of Human and Mouse Muscle during Hyperinsulinemia Demonstrates Insulin Receptor Downregulation as a Mechanism for Insulin Resistance. bioRxiv: 556571.
Bär, L., Feger, M., Fajol, A., et al. (2018) Insulin Suppresses the Production of Fibroblast Growth Factor 23 (FGF23). Proceedings of the National Academy of Sciences of the United States of America, 115, 5804-5809. https://doi.org/10.1073/pnas.1800160115
Dev, R., Bruera, E. and Dalal, S. (2018) Insulin Resistance and Body Composition in Cancer Patients. Annals of Oncology, 29, II18-II26. https://doi.org/10.1093/annonc/mdx815
Honors, M.A. and Kinzig, K.P. (2012) The Role of Insulin Resistance in the Development of Muscle Wasting during Cancer Cachexia. Journal of Cachexia, Sarcopenia and Muscle, 3, 5-11. https://doi.org/10.1007/s13539-011-0051-5
Dev, R., Del Fabbro, E. and Dalal, S. (2019) Endocrinopathies and Cancer Cachexia. Current Opinion in Supportive and Palliative Care, 13, 286-291. https://doi.org/10.1097/SPC.0000000000000464
Kidd, A.C., Skrzypski, M., Jamal-Hanjani, M., et al. (2019) Cancer Cachexia in Thoracic Malignancy: A Narrative Review. Current Opinion in Supportive and Palliative Care, 13, 316-322. https://doi.org/10.1097/SPC.0000000000000465
Wang, X., Yan, C. and Liu, J. (2019) Hyperinsulinemia-Induced KLF5 Mediates Endothelial Angiogenic Dysfunction in Diabetic Endothelial Cells. Journal of Molecular Histology, 50, 239-251. https://doi.org/10.1007/s10735-019-09821-3
Janssen, J.A. (2021) Hyperinsulinemia and Its Pivotal Role in Aging, Obesity, Type 2 Diabetes, Cardiovascular Disease and Cancer. International Journal of Molecular Sciences, 22, Article 7797. https://doi.org/10.3390/ijms22157797
Kim, N.H., Chang, Y., Lee, S.R., et al. (2020) Glycemic Status, Insulin Resistance, and Risk of Pancreatic Cancer Mortality in Individuals with and without Diabetes. Official Journal of the American College of Gastroenterology, 115, 1840-1848. https://doi.org/10.14309/ajg.0000000000000956
Nasiri, A.R., Rodrigues, M.R., Li, Z., et al. (2019) SGLT2 Inhibition Slows Tumor Growth in Mice by Reversing Hyperinsulinemia. Cancer & Metabolism, 7, Article No. 10. https://doi.org/10.1186/s40170-019-0203-1
Wang, Y., Nasiri, A.R., Damsky, W.E., et al. (2018) Uncoupling Hepatic Oxidative Phosphorylation Reduces Tumor Growth in Two Murine Models of Colon Cancer. Cell Reports, 24, 47-55. https://doi.org/10.1016/j.celrep.2018.06.008
Nishimura, Y., Musa, I., Holm, L., et al. (2021) Recent Advances in Measuring and Understanding the Regulation of Exercise-Mediated Protein Degradation in Skeletal Muscle. American Journal of Physiology-Cell Physiology, 321, C276-C287. https://doi.org/10.1152/ajpcell.00115.2021
Kullmann, S., Hummel, J., Wagner, R., et al. (2022) Empagliflozin Improves Insulin Sensitivity of the Hypothalamus in Humans with Prediabetes: A Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial. Diabetes Care, 45, 398-406. https://doi.org/10.2337/dc21-1136