基于损耗模式共振(Lossy Mode Resonance, LMR)原理的新型光学传感器利用损耗模和导模之间的周期性耦合来激发共振峰,从而实现快速无损的高灵敏度传感检测。LMR已被证明能够克服传统表面等离子体共振(Surface Plasmon Resonance, SPR)传感器制备和功能上的局限性,于各种工作环境中都能提供更优秀的传感性能,在国外开始获得广泛的关注和研究。本文详细阐述了LMR传感器的起源、发展、器件结构组成与传感机理,展示了LMR传感技术在生命科学、环境监测、医学诊断、工业和制造业等领域的应用场景。这可以帮助国内科研人员深入了解LMR传感器的发展历程、基本原理和功能特性,为工程技术人员提供数据参考和文献支撑,促进各领域对LMR传感技术的探索与研究。 A new type of optical sensor based on the principle of Lossy Mode Resonance (LMR) utilizes the periodic coupling between the lossy mode and the guiding mode to excite the resonance dips, thus realizing fast and non-destructive high-sensitivity sensing and detection. LMR has been proved to be able to overcome the limitations of conventional Surface Plasmon Resonance (SPR) sensors in terms of preparation and function, and to provide better sensing performance in various working environments, and it has begun to gain wide attention and research abroad. This paper elaborates the origin, development, device structure composition and sensing mechanism of LMR sensors, and shows the application of LMR sensing technology in the fields of life sciences, environmental monitoring, medical diagnosis, industry and manufacturing, etc. This can help domestic researchers to deeply understand the development history, basic principles and functional characteristics of LMR sensors, provide data reference and literature support for engineers and technicians, and promote the exploration and research of LMR sensing technology in various fields.
Development and Application of Lossy Mode Resonance Optical Sensors
Wenchao Tong1, Yujie Zhang2, Yizhuo Zhang2*
1Changhe Aircraft Industry Group Corporation Ltd., Jingdezhen Jiangxi
2Luoyang Institute of Electro-Optical Equipment, AVIC, Luoyang Henan
Received: Feb. 9th, 2024; accepted: May 24th, 2024; published: May 31st, 2024
ABSTRACT
A new type of optical sensor based on the principle of Lossy Mode Resonance (LMR) utilizes the periodic coupling between the lossy mode and the guiding mode to excite the resonance dips, thus realizing fast and non-destructive high-sensitivity sensing and detection. LMR has been proved to be able to overcome the limitations of conventional Surface Plasmon Resonance (SPR) sensors in terms of preparation and function, and to provide better sensing performance in various working environments, and it has begun to gain wide attention and research abroad. This paper elaborates the origin, development, device structure composition and sensing mechanism of LMR sensors, and shows the application of LMR sensing technology in the fields of life sciences, environmental monitoring, medical diagnosis, industry and manufacturing, etc. This can help domestic researchers to deeply understand the development history, basic principles and functional characteristics of LMR sensors, provide data reference and literature support for engineers and technicians, and promote the exploration and research of LMR sensing technology in various fields.
仝文超,张玉洁,张一卓. 损耗模式共振光学传感器的发展与应用Development and Application of Lossy Mode Resonance Optical Sensors[J]. 传感器技术与应用, 2024, 12(03): 504-520. https://doi.org/10.12677/jsta.2024.123055
参考文献References
Boruah, R., Mohanta, D., Choudhury, A., Nath, P. and Ahmed, G.A. (2015) Surface Plasmon Resonance-Based Protein Bio-Sensing Using a Kretschmann Configured Double Prism Arrangement. IEEE Sensors Journal, 15, 6791-6796. https://doi.org/10.1109/JSEN.2015.2464675
Geng, Z., Li, Q., Wang, W. and Li, Z. (2010) PDMS Prism-Glass Optical Coupling for Surface Plasmon Resonance Sensors Based on MEMS Technology. Science China Information Sciences, 53, 2144-2158. https://doi.org/10.1007/s11432-010-4072-z
Luo, W., Wang, R., Li, H., Kou, J., Zeng, X., Huang, H., Hu, X. and Huang, W. (2019) Simultaneous Measurement of Refractive Index and Temperature for Prism-Based Surface Plasmon Resonance Sensors. Optics Express, 27, 576-589. https://doi.org/10.1364/OE.27.000576
Ozdemir, S.K. and Turhan-Sayan, G. (2003) Temperature Effects on Surface Plasmon Resonance: Design Considerations for an Optical Temperature Sensor. Journal of Lightwave Technology, 21, 805-814. https://doi.org/10.1109/JLT.2003.809552
Saha, S., Mehan, N., Sreenivas, K. and Gupta, V. (2009) Temperature Dependent Optical Properties of (002) Oriented ZnO Thin Film Using Surface Plasmon Resonance. Applied Physics Letters, 95, Article ID: 071106. https://doi.org/10.1063/1.3206954
Shibayama, J., Mitsutake, K., Yamauchi, J. and Nakano, H. (2020) Kretschmann-and Otto-Type Surface Plasmon Resonance Waveguide Sensors in the Terahertz Regime. Microwave and Optical Technology Letters, 63, 103-106. https://doi.org/10.1002/mop.32581
Verma, A., Prakash, A. and Tripathi, R. (2016) Sensitivity Improvement of Graphene Based Surface Plasmon Resonance Biosensors with Chaclogenide Prism. Optik, 127, 1787-1791. https://doi.org/10.1016/j.ijleo.2015.11.083
Zhu, J. and Li, N. (2020) Novel High Sensitivity SPR Sensor Based on Surface Plasmon Resonance Technology and IMI Waveguide Structure. Results in Physics, 17, Article ID: 103049. https://doi.org/10.1016/j.rinp.2020.103049
Nylander, C., Bo, L. and Lind, T. (1983) Gas Detection by Means of Surface Plasmon Resonance. Sensors & Actuators, 3, 79-88. https://doi.org/10.1016/0250-6874(82)80008-5
Piliarik, M. and Homola, J. (2009) Surface Plasmon Resonance (SPR) Sensors: Approaching Their Limits? Optics Express, 17, 16505-16517. https://doi.org/10.1364/OE.17.016505
Del Villar, I., Torres, V. and Beruete, M. (2015) Experimental Demonstration of Lossy Mode and Surface Plasmon Resonance Generation with Kretschmann Configuration. Optics Letters, 40, 4739-4742. https://doi.org/10.1364/OL.40.004739
Del Villar, I., Zamarreno, C.R., Hernaez, M., Arregui, F.J. and Matias, I.R. (2010) Lossy Mode Resonance Generation with Indium-Tin-Oxide-Coated Optical Fibers for Sensing Applications. Journal of Lightwave Technology, 28, 111-117. https://doi.org/10.1109/JLT.2009.2036580
Wang, Q., Li, X., Zhao, W.-M. and Jin, S. (2019) Lossy Mode Resonance-Based Fiber Optic Sensor Using Layer-by-Layer SnO2 Thin Film and SnO2 Nanoparticles. Applied Surface Science, 492, 374-381. https://doi.org/10.1016/j.apsusc.2019.06.168
Usha, S.P., Mishra, S.K. and Gupta, B.D. (2015) Fiber Optic Hydrogen Sulfide Gas Sensors Utilizing ZnO Thin Film/ZnO Nanoparticles: A Comparison of Surface Plasmon Resonance and Lossy Mode Resonance. Sensors and Actuators B: Chemical, 218, 196-204. https://doi.org/10.1016/j.snb.2015.04.108
Homola, J. (2010) Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chemical Reviews, 108, 462-493.
Wolfbeis, O.S. (2008) Fiber-Optic Chemical Sensors and Biosensors. Analytical Chemistry, 74, 2663-2678. https://doi.org/10.1021/ac800473b
Zamarreño, C.R., Hernaez, M., Villar, I.D., Matias, I.R. and Arregui, F.J. (2011) Optical Fiber pH Sensor Based on Lossy-Mode Resonances by Means of Thin Polymeric Coatings. Sensors and Actuators B, 155, 290-297. https://doi.org/10.1016/j.snb.2010.12.037
Sanchez, P., Zamarreno, C.R., Hernaez, M., Villar, I.D., Matias, I.R. and Arregui, F.J. (2013) Considerations for Lossy-Mode Resonance-Based Optical Fiber Sensor. IEEE Sensors Journal, 13, 1167-1171. https://doi.org/10.1109/JSEN.2012.2227717
Socorro, A.B., Del Villar, I., Corres, J.M., Arregui, F.J. and Matias, I.R. (2011) Influence of Waist Length in Lossy Mode Resonances Generated with Coated Tapered Single-Mode Optical Fibers. IEEE Photonics Technology Letters, 23, 1579-1581. https://doi.org/10.1109/LPT.2011.2164520
Zhao, M., Wang, J., Zhang, Y., Ge, M., Zhang, P., Shen, J. and Li, C. (2022) Self-Referenced Refractive Index Sensor Based on Double-Dips Method with Bimetal-Dielectric and Double-Groove Grating. Optics Express, 30, 8376-8390. https://doi.org/10.1364/OE.454344
Wang, Y., Yu, J., Mao, Y, F., Chen, J. and Zhu, J. (2020) Stable, High-Performance Sodium-Based Plasmonic Devices in the Near Infrared. Nature, 581, 401-405. https://doi.org/10.1038/s41586-020-2306-9
Del Villar, I., Zamarreño, C.R., Hernaez, M., Arregui, F.J. and Matias, I.R. (2010) Generation of Lossy Mode Resonances with Absorbing Thin-Films. Journal of Lightwave Technology, 28, 3351-3357. https://doi.org/10.1109/JLT.2010.2082492
Ozcariz, A., Dominik, M., Smietana, M., Zamarreño, C.R., Del Villar, I. and Arregui, F.J. (2019) Lossy Mode Resonance Optical Sensors Based on Indium-Gallium-Zinc Oxide Thin Film. Sensors and Actuators A: Physical, 290, 20-27. https://doi.org/10.1016/j.sna.2019.03.010
Chiavaioli, F., Zubiate, P., Villar, I.D., Zamarreno, C.R. and Baldini, F. (2019) Lossy Mode Resonance Fiber-Optic Biosensing Allowing Ultra-Low Detection Limit. Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, 23-27 June 2019, 1. https://doi.org/10.1109/CLEOE-EQEC.2019.8872284
Bohorquez, D., Del Villar, I., Corres, J.M. and Matias, I.R. (2021) Wavelength and Intensity Based Lossy Mode Resonance Breathing Sensor. Optics & Laser Technology, 140, Article ID: 107063. https://doi.org/10.1016/j.optlastec.2021.107063
Zubiate, P., Zamarreño, C.R., Del Villar, I., Matias, I.R. and Arregui, F.J. (2016) Tunable Optical Fiber pH Sensors Based on TE and TM Lossy Mode Resonances (LMRs). Sensors and Actuators B: Chemical, 231, 484-490. https://doi.org/10.1016/j.snb.2016.03.024
Corres, J.M., Ascorbe, J., Arregui, F.J. and Matias, I.R. (2013) Tunable Electro-Optic Wavelength Filter Based on Lossy-Guided Mode Resonances. Optics Express, 21, 31668-31677. https://doi.org/10.1364/OE.21.031668
Torres, V., Beruete, M., Sánchez, P. and Del Villar, I. (2016) Indium Tin Oxide Refractometer in the Visible and near Infrared via Lossy Mode and Surface Plasmon Resonances with Kretschmann Configuration. Applied Physics Letters, 108, Article ID: 043507. https://doi.org/10.1063/1.4941077
Del Villar, I., Zamarreño, C.R., Sanchez, P., Hernaez, M., Valdivielso, C.F., Arregui, F.J. and Matias, I.R. (2010) Generation of Lossy Mode Resonances by Deposition of High-Refractive-Index Coatings on Uncladded Multimode Optical Fibers. Journal of Optics, 12, Article ID: 095503. https://doi.org/10.1088/2040-8978/12/9/095503
Hernáez, M., Villar, I.D., Zamarreo, C.R., Arregui, F.J. and Matias, I.R. (2010) Optical Fiber Refractometers Based on Lossy Mode Resonances Supported by TiO2 Coatings. Applied Optics, 49, 3980-3985. https://doi.org/10.1364/AO.49.003980
Lin, Y.-C. and Chen, L.-Y. (2021) Development of a Temperature-Controlled Optical Planar Waveguide Sensor with Lossy Mode Resonance for Refractive Index Measurement. Photonics, 8, Article No. 199. https://doi.org/10.3390/photonics8060199
Carson, R.F. and Batchman, T.E. (1988) Coupling and Absorption Phenomena in Semiconductor-Clad Dielectric Optical Waveguides. Proceedings of the Integrated Optical Circuit Engineering V, Cambridge, MA. https://doi.org/10.1117/12.942309
Carson, R.F. and Batchman, T.E. (1990) Multimode Phenomena in Semiconductor-Clad Dielectric Optical Waveguide Structures. Applied Optics, 29, 2769-2780. https://doi.org/10.1364/AO.29.002769
Marcuse, D.M. (1974) Theory of Dielectric Optical Wave Guides. Academic Press, London.
Samaras, S., Diamantidou, E., Ataloglou, D., Sakellariou, N., Vafeiadis, A., Magoulianitis, V., Lalas, A., Dimou, A., Zarpalas, D., Votis, K., Daras, P. and Tzovaras, D. (2019) Deep Learning on Multi Sensor Data for Counter UAV Applications—A Systematic Review. Sensors (Basel), 19, Article No. 4837. https://doi.org/10.3390/s19224837
Xu, D., Gao, H., Hou, Z., Zhang, Y., Tong, X., Zhang, Y., Zhang, P., Shen, J. and Li, C. (2022) A High-Sensitivity Fiber-Optic Fabry-Perot Gas Pressure Sensor with Epoxy Resin Adhesive. IEEE Sensors Journal, 22, 10551-10558. https://doi.org/10.1109/JSEN.2022.3168290
Gao, H., Xu, D., Ye, Y., Zhang, Y., Shen, J. and Li, C. (2022) Fiber-Tip Polymer Filled Probe for High-Sensitivity Temperature Sensing and Polymer Refractometers. Optics Express, 30, 8104-8114. https://doi.org/10.1364/OE.449852
Gao, H., Wang, J., Shen, J., Zhang, S., Xu, D., Zhang, Y. and Li, C. (2021) Study of the Vernier Effect Based on the Fabry-Perot Interferometer: Methodology and Application. Photonics, 8, Article No. 304. https://doi.org/10.3390/photonics8080304
Bozzi, M., Georgiadis, A. and Wu, K. (2011) Review of Substrate-Integrated Waveguide Circuits and Antennas. IET Microwaves Antennas & Propagation, 5, 909-920. https://doi.org/10.1049/iet-map.2010.0463
Hu, J. and Menyuk, C.R. (2009) Understanding Leaky Modes: Slab Waveguide Revisited. Advances in Optics and Photonics, 1, 58-106. https://doi.org/10.1364/AOP.1.000058
曹庄琪. 导波光学[M]. 北京: 科学出版社, 2007.
Ding, Y. and Magnusson, R. (2004) Resonant Leaky-Mode Spectral-Band Engineering and Device Applications. Optics Express, 12, 5661-5674. https://doi.org/10.1364/OPEX.12.005661
刘嘉玲. 基于泄漏模波导的模式分辨器[D]: [硕士学位论文]. 武汉: 华中科技大学, 2019.
Marciniak, M., Grzegorzewski, J. and Szustakowski, M. (1993) Analysis of Lossy Mode Cut-Off Conditions in Planar Waveguides with Semiconductor Guiding Layer. IEE Proceedings Journal (Optoelectronics), 140, 247-252. https://doi.org/10.1049/ip-j.1993.0040
Yang, F. and Sambles, J.R. (1997) Determination of the Optical Permittivity and Thickness of Absorbing Films Using Long Range Modes. Journal of Modern Optics, 44, 1155-1163. https://doi.org/10.1080/09500349708230726
Kaur, D., Sharma, V.K. and Kapoor, A. (2014) High Sensitivity Lossy Mode Resonance Sensors. Sensors and Actuators B: Chemical, 198, 366-376. https://doi.org/10.1016/j.snb.2014.03.058
Liu, N., Wang, S., Cheng, Q., Pang, B. and Lv, J. (2021) Two-Dimensional Transition Metal Dichalcogenides-Based High Sensitivity Lossy Mode Refractive Index Sensor. IEEE Sensors Journal, 21, 6043-6049. https://doi.org/10.1109/JSEN.2020.3042470
Qiu, C., Gan, S., Xiang, Y. and Dai, X. (2020) High Figure of Merit in Lossy Mode Resonance Sensors with PtSe2 Thin Film. Plasmonics, 16, 729-735. https://doi.org/10.1007/s11468-020-01337-x
Letko, E., Bundulis, A. and Mozolevskis, G. (2022) Theoretical Development of Polymer-Based Integrated Lossy-Mode Resonance Sensor for Photonic Integrated Circuits. Photonics, 9, Article No. 764. https://doi.org/10.3390/photonics9100764
Kumar, A., Sharma, V.K., Kumar, D. and Kapoor, A. (2013) Integrated Optic TE/TM Pass Polarizers Using Resonant Coupling between ITO Thin Film Lossy Modes and Dielectric Waveguide Modes. Optics Communications, 291, 247-252. https://doi.org/10.1016/j.optcom.2012.10.022
Batchman, T.E. and Mcwright, G.M. (1982) Mode Coupling between Dielectric and Semiconductor Planar Waveguides. IEEE Journal of Quantum Electronics, 18, 628-634. https://doi.org/10.1109/TMTT.1982.1131108
Batchman, T. and Rashleigh, S. (1972) Mode-Selective Properties of a Metal-Clad-Dielectric-Slab Waveguide for Integrated Optics. IEEE Journal of Quantum Electronics, 8, 848-850. https://doi.org/10.1109/JQE.1972.1076873
Takano, T. and Hamasaki, J. (1972) Propagating Modes of a Metal-Clad-Dielectric-Slab Waveguide for Integrated Optics. IEEE Journal of Quantum Electronics, 8, 206-212. https://doi.org/10.1109/JQE.1972.1076923
Polky, J.N. and Mitchell, G.L. (1974) Metal-Clad Planar Dielectric Waveguide for Integrated Optics. Journal of the Optical Society of America, 64, 274-279. https://doi.org/10.1364/JOSA.64.000274
Kaminow, I.P., Mammel, W.L. and Weber, H.P. (1974) Metal-Clad Optical Waveguides: Analytical and Experimental Study. Applied Optics, 13, 396-405. https://doi.org/10.1364/AO.13.000396
Yamamoto, Y., Kamiya, T. and Yanai, H. (1975) Propagation Characteristics of a Partially Metal-Clad Optical Guide: Metal-Clad Optical Strip Line. Applied Optics, 14, 322-326. https://doi.org/10.1364/AO.14.000322
Rashleigh, S.C. (1976) Four-Layer Metal-Clad Thin Film Optical Waveguides. Optical & Quantum Electronics, 8, 49-60. https://doi.org/10.1007/BF00620440
Fink, H.J. (1976) Propagation of Waves in Optical Waveguides with Various Dielectric and Metallic Claddings. IEEE Journal of Quantum Electronics, 12, 365-367. https://doi.org/10.1109/JQE.1976.1069165
Hulse, C.A. and Knoesen, A. (1992) Iterative Calculation of Complex Propagation Constants of Modes in Multilayer Planar Waveguides. IEEE Journal of Quantum Electronics, 28, 2682-2684. https://doi.org/10.1109/3.166459
Andreev, A., Pantchev, B., Danesh, P., Zafirova, B., Karakoleva, E., Vlaikova, E. and Alipieva, E. (2005) A Refractometric Sensor Using Index-Sensitive Mode Resonance between Single-Mode Fiber and Thin Film Amorphous Silicon Waveguide. Sensors and Actuators B: Chemical, 106, 484-488. https://doi.org/10.1016/j.snb.2004.09.002
Razansky, D., Einziger, P.D. and Adam, D.R. (2005) Broadband Absorption Spectroscopy via Excitation of Lossy Resonance Modes in Thin Films. Physical Review Letters, 95, Article ID: 018101. https://doi.org/10.1103/PhysRevLett.95.018101
Andreev, A.T., Zafirova, B.S., Karakoleva, E.I., Dikovska, A.O. and Atanasov, P.A. (2008) Highly Sensitive Refractometers Based on a Side-Polished Single-Mode Fibre Coupled with a Metal Oxide Thin-Film Planar Waveguide. Journal of Optics A Pure & Applied Optics, 10, Article ID: 035303. https://doi.org/10.1088/1464-4258/10/3/035303
Zamarreo, C.R., Hernaez, M., Sánchez, P., Villar, I.D. and Arregui, F.J. (2011) Optical Fiber Humidity Sensor Based on Lossy Mode Resonances Supported by TiO2/PSS Coatings. Procedia Engineering, 25, 1385-1388. https://doi.org/10.1016/j.proeng.2011.12.342
Kaur, D., Sharma, V.K. and Kapoor, A. (2015) Effect of Prism Index on Sensitivity of Lossy Mode Resonance Sensors Operating in Visible Region. Journal of Nanophotonics, 9, Article ID: 093042. https://doi.org/10.1117/1.JNP.9.093042
Zubiate, P., Zamarreño, C.R., Sánchez, P., Matias, I.R. and Arregui, F.J. (2017) High Sensitive and Selective C-Reactive Protein Detection by Means of Lossy Mode Resonance Based Optical Fiber Devices. Biosensors & Bioelectronics, 93, 176-181. https://doi.org/10.1016/j.bios.2016.09.020
Dreyer, U.J., Ozcariz, A., Ascorbe, J., Zubiate, P., Vitoria, I., Martelli, C., Da Silva, J.C.C. and Zamarreño, C.R. (2018) Gas Detection Using LMR-Based Optical Fiber Sensors. Proceedings, 2, Article No. 890. https://doi.org/10.3390/proceedings2130890
Hernaez, M., Mayes, A.G. and Melendi-Espina, S. (2018) Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection. Sensors, 18, Article No. 58. https://doi.org/10.3390/s18010058
Saini, R., Kumar, A., Bhatt, G., Kapoor, A., Paliwal, A., Tomar, M. and Gupta, V. (2019) Lossy Mode Resonance-Based Refractive Index Sensor for Sucrose Concentration Measurement. IEEE Sensors Journal, 20, 1217-1222. https://doi.org/10.1109/JSEN.2019.2946760
Dai, X., Chen, H., Qiu, C., Wu, L. and Xiang, Y. (2020) Ultrasensitive Multiple Guided-Mode Biosensor with Few-Layer Black Phosphorus. Journal of Lightwave Technology, 38, 1564-1571. https://doi.org/10.1109/JLT.2019.2954168
Zhao, Y., Wu, L., Gan, S., Ruan, B., Zhu, J., Dai, X. and Xiang, Y. (2018) High Figure of Merit Lossy Mode Resonance Sensor with Graphene. Plasmonics, 14, 929-934. https://doi.org/10.1007/s11468-018-0876-2
Otto, A. (1968) Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. ZeitschriftfürPhysikA Hadrons and Nuclei,216, 398-410. https://doi.org/10.1007/BF01391532
Kretschmann, E. and Raether, H. (1968) Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. ZeitschriftfürNaturforschung A, 23, 2135-2136. https://doi.org/10.1515/zna-1968-1247
Villar, I.D., Zamarreo, C.R., Sánchez, P., Hernaez, M. and Matias, I.R. (2010) Generation of Lossy Mode Resonances by Deposition of High-Refractive-Index Coatings on Uncladded Multimode Optical Fibers. Journal of Instrumentation, 12, Article ID: 095503. https://doi.org/10.1088/2040-8978/12/9/095503
Zamarreno, C.R., Hernaez, M., Villar, I.D., Matias, I.R. and Arregui, F.J. (2009) ITO Coated Optical Fiber Refractometers Based on Resonances in the Infrared Region. IEEE Sensors Journal, 10, 365-366. https://doi.org/10.1109/JSEN.2009.2034628
Zhang, Y., Zhang, P., Zhao, M., Xu, D., Wang, J., Li, Z., Tang, T., Shen, J. and Li, C. (2022) A High Sensitivity Lossy Mode Resonance Refractive Index Sensor Based on SBS Structure. Results in Physics, 36, Article ID: 105454. https://doi.org/10.1016/j.rinp.2022.105454
Paliwal, N. and John, J. (2014) Theoretical Modelling of Lossy Mode Resonance (LMR)Based Fiber Optic Temperature Sensor Utilizing TiO2 Sensing Layer. 12th International Conference on Fiber Optics and Photonics, Kharagpur, 13-16 December 2014, M4A.22. https://doi.org/10.1364/PHOTONICS.2014.M4A.22
Hernaez, M., Zamarreno, C.R., Fernandez-Valdivielso, C., Villar, I.D., Arregui, F.J. and Matias, I.R. (2010) Agarose Optical Fibre Humidity Sensor Based on Electromagnetic Resonance in the Infra-Red Region. Physica StatusSolidi, 7, 2767-2769. https://doi.org/10.1002/pssc.200983815
Zamarreno, C.R., Hernaez, M., Del Villar, I., Matias, I.R. and Arregui, F.J. (2010) Tunable Humidity Sensor Based on ITO-Coated Optical Fiber. Sensors and Actuators B: Chemical, 146, 414-417. https://doi.org/10.1016/j.snb.2010.02.029
Dikovska, A.O., et al. (2010) Optical Sensing of Ammonia Using ZnO Nanostructure Grown on a Side-Polished Optical-Fiber. Sensors and Actuators B: Chemical, 146, 331-336. https://doi.org/10.1016/j.snb.2010.02.018
Razquin, L., Zamarreno, C.R., Munoz, F.J., Matias, I.R. and Arregui, F.J. (2012) Thrombin Detection by Means of an Aptamer Based Sensitive Coating Fabricated onto LMR-Based Optical Fiber Refractometer. Proceedings of the Sensors, Taipei, 28-31 October 2012, 1-4. https://doi.org/10.1109/ICSENS.2012.6411186
Zamarreno, C.R., Ardaiz, I., Ruete, L., Munoz, F.J. and Arregui, F.J. (2013) C-Reactive Protein Aptasensor for Early Sepsis Diagnosis by Means of an Optical Fiber Device. Proceedings of the Sensors, Baltimore, 3-6 November 2013, 1-4. https://doi.org/10.1109/ICSENS.2013.6688222