AAC Advances in Analytical Chemistry 2163-1557 Scientific Research Publishing 10.12677/aac.2024.142015 AAC-88042 aac2024142_101560396.pdf 化学与材料 普鲁士蓝类似物作为钠离子电池正极材料的应用进展 Application Progress of Prussian Blue Analogues as Cathode Materials for Sodium-Ion Batteries 晓杰 2 1 2 1 涛涛 2 1 兰州交通大学化学化工学院,甘肃 兰州 null 11 05 2024 14 02 122 130 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

目前,锂离子电池被应用在多种储能领域,锂资源的持续消耗导致锂离子电池的成本高昂。由于丰富的钠资源储量以及价格优势,钠离子电池被认为是一类具潜力的新型储能装置。相对于锂离子来说,钠离子较大的离子半径对于电极材料的稳定性存在威胁。普鲁士蓝类似物具有易于调控的骨架结构、简单的合成工艺、较低的成本和环境友好等特点,适合作为钠离子电池正极材料。本文总结了普鲁士蓝类似物的结构与电化学性能之间的关系,并对其作为钠离子电池电极材料的研究方向进行了展望。 Currently, with the application of lithium-ion batteries in a variety of energy storage fields, the continuous depletion of lithium resources and its rising price have led to the high cost of lithium-ion batteries. Sodium-ion batteries are a potential new type of energy storage device due to their abundant sodium resource reserves and price advantages. The larger ionic radius of sodium ions is a threat to the stability of the electrode material in sodium-ion batteries compared to lithium-ion batteries. Prussian blue analogues are a suitable class of materials for sodium-ion battery electrode materials because of their easily regulated backbone structure, simple synthesis process, low cost, and environmental friendliness. In this paper, the relationship between the structure and electrochemical properties of Prussian blue analogues is summarized, and the development direction of them as electrode materials for sodium-ion batteries is prospected.

普鲁士蓝类似物,钠离子电池,正极材料, Prussian Blue Analogues Sodium-Ion Batteries Cathode Materials
摘要

目前,锂离子电池被应用在多种储能领域,锂资源的持续消耗导致锂离子电池的成本高昂。由于丰富的钠资源储量以及价格优势,钠离子电池被认为是一类具潜力的新型储能装置。相对于锂离子来说,钠离子较大的离子半径对于电极材料的稳定性存在威胁。普鲁士蓝类似物具有易于调控的骨架结构、简单的合成工艺、较低的成本和环境友好等特点,适合作为钠离子电池正极材料。本文总结了普鲁士蓝类似物的结构与电化学性能之间的关系,并对其作为钠离子电池电极材料的研究方向进行了展望。

关键词

普鲁士蓝类似物,钠离子电池,正极材料

Application Progress of Prussian Blue Analogues as Cathode Materials for Sodium-Ion Batteries<sup> </sup>

Xiaojie Wang, Jie Cui, Taotao Wang

School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu

Received: May 4th, 2024; accepted: May 24th, 2024; published: May 31st, 2024

ABSTRACT

Currently, with the application of lithium-ion batteries in a variety of energy storage fields, the continuous depletion of lithium resources and its rising price have led to the high cost of lithium-ion batteries. Sodium-ion batteries are a potential new type of energy storage device due to their abundant sodium resource reserves and price advantages. The larger ionic radius of sodium ions is a threat to the stability of the electrode material in sodium-ion batteries compared to lithium-ion batteries. Prussian blue analogues are a suitable class of materials for sodium-ion battery electrode materials because of their easily regulated backbone structure, simple synthesis process, low cost, and environmental friendliness. In this paper, the relationship between the structure and electrochemical properties of Prussian blue analogues is summarized, and the development direction of them as electrode materials for sodium-ion batteries is prospected.

Keywords:Prussian Blue Analogues, Sodium-Ion Batteries, Cathode Materials

Copyright © 2024 by author(s) and beplay安卓登录

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

目前,全球依旧以化石能源作为主要能源,因其消耗量大、储量有限且再生困难的问题已然面临着逐渐枯竭的趋势。并且这些能源的使用也伴随着大量的废气产生,给生态环境造成了不可逆的伤害。自1973年爆发的石油危机后,人们对无污染且可再生清洁能源技术的呼声越来越大 [ 1 ] ,清洁能源的关注度得到了进一步的提高。然而,我国可利用的风能、太阳能、潮汐能等清洁能源在利用上存在时间和空间分布不均的问题 [ 2 ] [ 3 ] 。并且预计到2050年,全球的能源需求会增加到30 TWavg[ 4 ] 。高性能的储能装置对于清洁能源的转化、利用和储存至关重要,开发高性能储能装置是实现碳达峰、碳中和远景目标的重要途径 [ 5 ] ,这对高性能的储能装置提出了高效率、低成本、高稳定、高安全、环境友好等要求。

锂离子电池作为高性能储能装置的代表之一,目前已被应用于各行各业,例如电动交通工具、便携式电子产品等领域 [ 6 ] 。但是全球锂资源的分布不均、(其中75%的锂资源主要分布在南美洲和北美洲),锂金属在地壳中可以被开发的储量低且锂资源的消耗量大,其价格也不断上涨 [ 7 ] 。钠作为地球含量第四丰富的元素,在地壳中的丰度为2.36%,比锂的储量(地壳中的丰度为0.0017%)多了三个数量级,而且钠元素分布广泛 [ 8 ] 。钠与锂同主族,具有与锂相近的标准电势(相对于标准氢电极的标准电势分别为:−2.71 V,−3.04 V)、离子尺寸(离子半径分别为1.02 Å、0.76 Å)以及高于锂的离子导电性 [ 9 ] [ 10 ] ,并且,锂离子电池的材料和工艺通过调整后可以直接用于钠离子电池,这也使得钠离子电池替代锂离子电池的生产具有更大的可能性 [ 11 ] [ 12 ] 。此外,相较于锂离子电池来说,钠离子电池对环境的影响更低 [ 13 ] 。综上所述,钠离子电池被认为是能够替代锂离子电池最具潜力的新型储能技术。

在储能技术中,电极材料是最重要的组成之一。钠离子较大的离子半径对电极材料的稳定性有着极大的威胁。普鲁士蓝和普鲁士蓝类似物具有可调控的三维开放骨架结构,具有易于合成,制备成本低,比表面积高以及离子通道大等优点 [ 14 ] [ 15 ] [ 16 ] [ 17 ] [ 18 ] 。但是普鲁士蓝和普鲁士蓝类似物存在晶体空位缺陷、高的结晶水含量、低的导电性以及电极界面副反应,通常会造成低比容量、差的循环稳定性以及倍率性能不理想等问题。因此,如何优化普鲁士蓝和普鲁士蓝类似物的结构是提升其电化学性能的主要问题。

2. 普鲁士蓝和普鲁士蓝类似物概述

1704年,普鲁士蓝被德国化学家Heinrich Diesbach首次发现,被认为是第一个现代合成颜料,然而这种通过牛血合成出来的普鲁士蓝结构是不稳定的 [ 19 ] [ 20 ] [ 21 ] 。第一位发现普鲁士蓝电化学活性的是Vernon D. Neff,自此打开了其在电化学领域应用的大门 [ 22 ] 。普鲁士蓝和普鲁士蓝类似物的广义结构通式为:AxM[M′(CN)6]1-y·□y·nH2O (0 < x < 2),其中A为碱金属、M为与N配位的高自旋态的金属,M′为C配位的低自旋态的金属,□为被结晶水所占据本应是C≡N的位置而产生的空位 [ 14 ] [ 23 ] [ 24 ] 。特别地,当M和M′都是Fe时,则是普鲁士蓝 [ 25 ] 。普鲁士蓝为面心结构(FCC,空间群为:Fm3m),晶胞参数为10.2 Å [ 17 ] 。如图1所示,普鲁士蓝和普鲁士蓝类似物均属于金属有机框架材料(Metal Organic Framework,简称MOF)被广泛应用于各个领域,并且在二次电池领域中应用最广泛的普鲁士蓝类似物是六氰基亚铁酸金属化物(Metal Hexacyanoferrate, MHCF)。

图1. 普鲁士蓝和普鲁士蓝类似物的应用领域

3. 有机系钠离子电池

普鲁士蓝和普鲁士蓝类似物作为钠离子电池正极材料首先面对的问题是钠离子在电极材料中脱嵌时,其较大的离子半径会产生较大应力。核壳结构的设计是一种解决上述问题有效的方案,通过壳层的高机械性能抑制作为内核的普鲁士蓝类似物的体积膨胀 [ 26 ] 。在核壳结构设计策略中主要分为两种:一种为MHCF@非MHCF,另一种为MHCF@MHCF。壳层的非MHCF主要是指碳基材料和MXene等材料,这类壳层材料通常会因为活性位点利用不充分导致总体容量下降以及制备成本的增加 [ 27 ] [ 28 ] 。MHCF@MHCF则是一种制备成本低廉的设计方案。例如:如图2(a)和图2(b)所示,Sun等 [ 29 ] 通过离子交换在六氰亚铁酸铁(NFFCN-Original)的外层合成了核壳结构的六氰基亚铁酸镍(NNiFFCN-0.002M NiCl2和NNiFFCN-0.005M NiCl2),在0.5 A g−1下,与NFFCN-Original相比,NNiFFCN-0.002M NiCl2和NNiFFCN-0.005M NiCl2的倍率性能和比容量均得到了提升。如图2(c)和图2(d)所示,Okubo等 [ 30 ] 选用了两步共沉淀法合成了一种核壳结构CuFe-PBA@NiFe-PBA,其在0.6 A g−1下的比容量为0.01 A g−1下的60%。与CuFe-PBA的24%相比,倍率性得到了大幅度提升。因此,MHCF@MHCF核壳结构是一种能够提升普鲁士蓝类似物电化学性能稳定性的结构设计策略。

图2. (a) 六氰亚铁酸镍/六氰亚铁酸铁(NNiFCN/NFFCN)的示意图和(b) 三种不同的普鲁士蓝类似物在0.5 A g1下的循环性能 [ 29 ] ;(c) CuFe-PBA@NiFe-PBA颗粒的扫描透射电镜和EDX线扫描结果图,铜(蓝线)、镍(绿线)、铁(红线)和(d) CuFe-PBA@NiFe-PBA和CuFe-PBA的倍率性能 [ 30 ]

其次,在有机系钠离子电池中普鲁士蓝和普鲁士蓝类似物中过量的水含量对于其电化学性能有不利的影响。早期研究主要集中在六氰基亚铁盐自分解合成普鲁士蓝类似物,例如:You等 [ 21 ] 在60℃下通过盐酸促使部分六氰基亚铁酸根缓慢分解释放亚铁离子,这些亚铁离子与残余的六氰基亚铁酸根进行配位反应合成了普鲁士蓝(HQ-NaFe)。图3(a)所示的热重分析可以看出,与快速沉淀法合成的普鲁士蓝(LQ-NaFe)相比,HQ-NaFe的水质量分数降低了5%,并且HQ-NaFe的热稳定性显著增强。此外,在倍率性能测试中,HQ-NaFe在0.6 A g−1下的比容量为70 mAh g−1,而LQ-NaFe的比容量几乎为零(图3(b))。然而,这种合成工艺由于铁源的限制,能够合成的普鲁士蓝类似物种类是有限的。

目前,主要研究集中在球磨法以及螯合剂辅助共沉淀法制备普鲁士蓝类似物。由于球磨法相对于共沉淀法溶剂使用量大幅度减少(一般为“盐包水”状态),所以能够获得更少水含量的普鲁士蓝类似物。例如:Peng等 [ 31 ] 通过球磨法制备了高度结晶的锰基普鲁士蓝类似物(MnHCF-S-170)。如图3(c)所示,与快速沉淀法合成的锰基普鲁士蓝类似物(MnHCF-L)相比,MnHCF-S-170的水质量分数下降了10.2%,减少了结构中的空位,增强了结构稳定性。在倍率测试中,MnHCF-S-170在任何电流密度下都比MnHCF-L具有更高的比容量(图3(d))。

图3. HQ-NaFe和LQ-NaFe的(a)热重分析和(b)倍率性能 [ 21 ] ;MnHCF-S-L和MnHCF-L的(c)热重分析和(d)倍率性能 [ 31 ]

与传统共沉淀法相比,螯合剂辅助共沉淀法在合成过程中螯合剂与六氰基亚铁酸根配体竞争金属离子,能够有效地减缓反应速率,得到具有更高结晶度的普鲁士蓝类似物 [ 32 ] 。Jiang等 [ 33 ] 采用二乙烯三胺五乙酸二钠(Na2DPTA)辅助共沉淀法合成了普鲁士蓝类似物(NiHCF-NCs)。NiHCF-NCs在4.0 A g−1的高电流密度下放电比容量为64.5 mAh g−1,快速共沉淀法合成的NiHCF-Bulks在4.0 A g−1下容量仅为17.6 mAh g−1。因此,实现水含量和空位缺陷的减少,主要依赖于减缓反应速率,增加晶体的结晶度。此外,相对于另外两种方法,螯合剂辅助共沉淀法由于原料低廉,合成装置简易,组分易于调控等优势具有更大的工业化应用前景。

普鲁士蓝和普鲁士蓝类似物存在本征缺陷——电导性差。处理该本征缺陷的主要手段是将普鲁士蓝和普鲁士蓝类似物与具有高导电性的碳基等材料进行复合 [ 36 ] 。例如:Wang等 [ 34 ] 通过水热反应让普鲁士蓝与有序介孔碳(CMK-3)复合得到了N-PB@CMK。如图4(a)所示,与N-PB相比,N-PB@CMK的电荷转移电阻为478.5 Ω,远低于未添加CMK-3的普鲁士蓝类似物(T-PB)的944.2 Ω。在3.2 A g−1的高电流密度下,N-PB@CMK表现出了87 mAh g−1的比容量,而T-PB仅为22 mAh g−1(图4(b))。虽然该优化方案能够有效地提升普鲁士蓝的导电性,但是其基于受限于单一铁源的水热法。因此,该优化方案适用的普鲁士蓝类似物种类是有限的。而Nie等 [ 35 ] 通过7,7,8,8-四氰基喹啉甲烷桥联普鲁士蓝类似物形成了电荷转移的“高速公路”,并将这种复合材料命名为NiHCF/TCNQ,NiHCF/TCNQ的电荷转移电阻低于纯NiHCF (图4(c))。NiHCF/TCNQ在0.02 A g−1下的比容量为56.4 mAh g−1,当电流密度增大至0.2 A g−1时其仍能释放出47.6 mAh g−1的比容量,NiHCF仅为29.4 mAh g−1(图4(d))。另外,该方案是基于共沉淀法制备普鲁士蓝类似物,具有一定的普适性。综上所述,提高普鲁士蓝和普鲁士蓝类似物的导电性,可以增强其倍率性能和提升比容量。

图4. N-PB@CMK和T-PB的(a) 电化学阻抗谱、等效电路和(b) 倍率性能 [ 34 ] ;NiHCF/TCNQ和NiHCF的(c) 电化学阻抗谱和(d) 倍率性能 [ 35 ]

4. 水系钠离子电池

水系钠离子电池具有可靠的安全性和廉价的成本,是储能装置中一个具有潜力的方向 [ 3 ] [ 37 ] 。水系钠离子电池利用无毒、不可燃和环保的水系电解液,减少了充放电循环中的风险。虽然普鲁士蓝和普鲁士蓝类似物有着天然的结构优势,但是在水系电解液中钠离子有严重的溶剂化效应,这对于普鲁士蓝和普鲁士蓝类似物在水系钠离子电池中应用具有极大的挑战。

在水系钠离子电池中的研究最为广泛的普鲁士蓝类似物是镍基普鲁士蓝类似物和铜基普鲁士蓝类似物。相对于其它普鲁士蓝类似物,镍基普鲁士蓝类似物由于镍的电化学惰性,其具有更高的机械强度和结构稳定性。Wessells等 [ 38 ] 通过共沉淀法制备了K0.6Ni1.2Fe(CN)6·3.6H2O,由于Na+嵌入和脱出的结构变化和结构应力变化较小,在0.05 A g−1的电流密度下循环5000次后,容量保持率为66%。证明了镍基普鲁士蓝类似在水系钠离子电池中具有较好的循环稳定性。Shen等 [ 39 ] 采用了柠檬酸钠辅助共沉淀法合成了单斜相Na1.45Ni[Fe(CN)6]0.87·3.02H2O(m-NiHCF),与无螯合剂共沉淀法合成出来的立方相镍基普鲁士蓝类似(Na1.21Ni[Fe(CN)6]0.86·3.21H2O,c-NiHCF)相比,m-NiHCF的结晶水质量分数下降了1.23%,所以m-NiHCF的空位减少。m-NiHCF在0.1 A g−1的电流密度下的初始比容量达到了70.1 mAh g−1,c-NiHCF仅为60.8 mAh g−1。即使在2.0 A g−1的高电流密度下,m-NiHCF也具有53.2 mAh g−1的比容量,c-NiHCF仅为18.2 mAh g−1。根据上述研究,普鲁士蓝类似物作为水系钠离子电池正极材料,也可以通过减缓合成速率增强其电化学性能。铜基普鲁士蓝类似物由于结构中与氮配位的铜能够提升与碳配位的铁的氧化还原反应活性,并且铜具有电化学惰性能够增加结构稳定性,所以在水系钠离子电池中被广泛研究 [ 40 ] [ 41 ] 。Wang等 [ 7 ] 通过共沉淀法原位聚合制备了铜基普鲁士蓝类似物与科琴黑复合材料(CuHCF),改善了铜基普鲁士蓝类似物的导电性。在0.3 A g−1的电流密度下,CuHCF在饱和硝酸钠水溶液中循环25次后比容量稳定在80 mAh g−1,继续循环225次后比容量几乎无衰减。Wu等 [ 42 ] 报道了通过共沉淀合成了Na2CuFe(CN)6富钠的正极材料并与NaTi2(PO4)3负极组成了全电池,平均放电电压达到1.4 V,比能量为48 Wh kg−1。根据上述结果,铜基普鲁士蓝类似物在水系钠离子电池正极领域具有着良好的应用前景。此外,可以认为富钠(A = Na, x ≥ 1)的普鲁士蓝类似物在水系钠离子电池中通常具有更好的比容量表现。

水系钠离子电池中缓解钠离子溶剂化效应的主要手段是电解液的优化。例如:Nakamoto等 [ 43 ] 以Na2MnFe(CN)6为水系钠离子电池正极模型,在NaClO4水溶液中研究了电解液浓度对工作电压的影响,证明了高浓度电解液有利于电化学窗口的拓宽。Lamprecht等 [ 44 ] 以Na2Co[Fe(CN)6]和Na2Ni[Fe(CN)6]为模型电极,通过其在不同电解液中充放电过程中电极的变化,掲示了水系钠离子电池电解液中存在的阴离子的类型对电极稳定性的影响,以ClO4> NO3> Cl> SO42−的顺序,稳定性逐渐降低,并且他们认为溶解过程是由电极氧化过程中有害负离子吸附引起的。因此,在8 M NaClO4水溶液(pH = 5.5)中,Na2Ni[Fe(CN)6]在循环1000次后几乎没有容量损失。

5. 总结与展望

目前,虽然可以通过合成工艺改进、与碳基材料复合以及改性电解液等手段缓解普鲁士蓝和普鲁士蓝类似物的一些缺陷问题,但是要实现普鲁士蓝和普鲁士蓝类似物更进一步的规模化应用仍需要研究:

1) 普鲁士蓝和普鲁士蓝类似物目前主要通过水溶液共沉淀法制备,然而该过程用时长,因此其生产效率必然较低,如何提升生产效率是我们需要解决的问题之一。

2) 普鲁士蓝和锰基普鲁士类似物具有的原料丰富、相对较低的制备成本等特点,具有较好的应用前景。但是目前的研究距离其理论容量依旧有着不小的差距,在水系离子电池中该问题尤为突出。并且,锰基普鲁士蓝类似物存在着Jahn-Telle效应的问题未能有效抑制。

3) 普鲁士蓝和普鲁士蓝类似物在合成过程中很难实现零缺陷,目前部分研究中通过添加络合剂等手段控制反应速度,减少空位等缺陷,但是这些方法会增加生产成本和环境上的问题。因此,需要继续探索无添加剂、易于调控的绿色合成方法。

文章引用

王晓杰,崔 洁,王涛涛. 普鲁士蓝类似物作为钠离子电池正极材料的应用进展Application Progress of Prussian Blue Analogues as Cathode Materials for Sodium-Ion Batteries[J]. 分析化学进展, 2024, 14(02): 122-130. https://doi.org/10.12677/aac.2024.142015

参考文献 References Goodenough, J.B. (2018) How We Made the Li-Ion Rechargeable Battery. Nature Electronics, 1, 204.
https://doi.org/10.1038/s41928-018-0048-6
Li, Y., Zhao, J., Hu, Q., et al. (2022) Prussian Blue Analogs Cathodes for Aqueous Zinc Ion Batteries. Materials Today Energy, 29, Article 101095.
https://doi.org/10.1016/j.mtener.2022.101095
Shu, W., Li, J., Zhang, G., et al. (2024) Progress on Transition Metal Ions Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium-/Potassium-Ion Batteries. Nano-Micro Letters, 16, Article No. 128.
https://doi.org/10.1007/s40820-024-01355-y
Bors, R., Yun, J., Marzak, P., et al. (2018) Chromium(II) Hexacyanoferrate-Based Thin Films as a Material for Aqueous Alkali Metal Cation Batteries. ACS Omega, 3, 5111-5115.
https://doi.org/10.1021/acsomega.8b00273
Liu, Y., Fan, S., Gao, Y., et al. (2023) Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries. Small, 19, Article 2302687.
https://doi.org/10.1002/smll.202302687
Peng, C., Xu, X., Li, F., et al. (2023) Recent Progress of Promising Cathode Candidates for Sodium-Ion Batteries: Current Issues, Strategy, Challenge, and Prospects. Small Structures, 4, Article 2300150.
https://doi.org/10.1002/sstr.202300150
Wang, B., Wang, X., Liang, C., et al. (2019) An All-Prussian-Blue-Based Aqueous Sodium-Ion Battery. ChemElectroChem, 6, 4848-4853.
https://doi.org/10.1002/celc.201901223
Hwang, J.-Y., Myung, S.-T. and Sun, Y.-K. (2017) Sodium-Ion Batteries: Present and Future. Chemical Society Reviews, 46, 3529-3614.
https://doi.org/10.1039/C6CS00776G
Delmas, C. (2018) Sodium and Sodium-Ion Batteries: 50 Years of Research. Advanced Energy Materials, 8, Article 1703137.
https://doi.org/10.1002/aenm.201703137
Deng, J., Luo, W.-B., Chou, S.-L., et al. (2018) Sodium-Ion Batteries: From Academic Research to Practical Commercialization. Advanced Energy Materials, 8, Article 1701428.
https://doi.org/10.1002/aenm.201701428
He, M., Davis, R., Chartouni, D., et al. (2022) Assessment of the First Commercial Prussian Blue Based Sodium-Ion Battery. Journal of Power Sources, 548, Article 232036.
https://doi.org/10.1016/j.jpowsour.2022.232036
Wu, H., Hao, J., Jiang, Y., et al. (2024) Alkaline-Based Aqueous Sodium-Ion Batteries for Large-Scale Energy Storage. Nature Communications, 15, Article No. 575.
https://doi.org/10.1038/s41467-024-44855-6
Peters, J., Buchholz, D., Passerini, S., et al. (2016) Life Cycle Assessment of Sodium-Ion Batteries. Energy & Environmental Science, 9, 1744-1751.
https://doi.org/10.1039/C6EE00640J
Zhou, A., Cheng, W., Wang, W., et al. (2020) Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances toward High-Performance Sodium and Potassium Ion Batteries. Advanced Energy Materials, 11, Article 2000943.
https://doi.org/10.1002/aenm.202000943
Wu, X., Ru, Y., Bai, Y., et al. (2022) PBA Composites and Their Derivatives in Energy and Environmental Applications. Coordination Chemistry Reviews, 451, Article 214260.
https://doi.org/10.1016/j.ccr.2021.214260
Li, W.-J., Han, C., Cheng, G., et al. (2019) Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Small, 15, Article 1900470.
https://doi.org/10.1002/smll.201900470
Song, X., Song, S., Wang, D., et al. (2021) Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis. Small Methods, 5, Article 2001000.
https://doi.org/10.1002/smtd.202001000
Yi, H., Qin, R., Ding, S., et al. (2020) Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications. Advanced Functional Materials, 31, Article 2006970.
https://doi.org/10.1002/adfm.202006970
Avila, Y., Acevedo-Peña, P., Reguera, L., et al. (2022) Recent Progress in Transition Metal Hexacyanometallates: From Structure to Properties and Functionality. Coordination Chemistry Reviews, 453, Article 214274.
https://doi.org/10.1016/j.ccr.2021.214274
Peng, J., Zhang, W., Liu, Q., et al. (2022) Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present and Future. Advanced Materials, 34, Article 2108384.
https://doi.org/10.1002/adma.202108384
You, Y., Wu, X.-L., Yin, Y.-X., et al. (2014) High-Quality Prussian Blue Crystals as Superior Cathode Materials for Room-Temperature Sodium-Ion Batteries. Energy & Environmental Science, 7, 1643-1647.
https://doi.org/10.1039/C3EE44004D
Neff, V.D. (1978) Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. Journal of the Electrochemical Society, 125, 886.
https://doi.org/10.1149/1.2131575
Chen, Z.-Y., Fu, X.-Y., Zhang, L.-L., et al. (2022) High-Performance Fe-Based Prussian Blue Cathode Material for Enhancing the Activity of Low-Spin Fe by Cu Doping. ACS Applied Materials & Interfaces, 14, 5506-5513.
https://doi.org/10.1021/acsami.1c23793
Lu, Y., Wang, L., Cheng, J., et al. (2012) Prussian Blue: A New Framework of Electrode Materials for Sodium Batteries. Chemical Communications, 48, 6544-6546.
https://doi.org/10.1039/c2cc31777j
Xie, B., Sun, B., Gao, T., et al. (2022) Recent Progress of Prussian Blue Analogues as Cathode Materials for Nonaqueous Sodium-Ion Batteries. Coordination Chemistry Reviews, 460, Article 214478.
https://doi.org/10.1016/j.ccr.2022.214478
Zhao, J., Wang, J., Bi, R., et al. (2021) General Synthesis of Multiple-Cores@Multiple-Shells Hollow Composites and Their Application to Lithium-Ion Batteries. Angewandte Chemie International Edition, 60, 25719-25722.
https://doi.org/10.1002/anie.202110982
Xue, Q., Li, L., Huang, Y., et al. (2019) Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via in situ Polymerization Coating. ACS Applied Materials & Interfaces, 11, 22339-22345.
https://doi.org/10.1021/acsami.9b04579
Gao, X., Zheng, Y., Chang, J., et al. (2022) Universal Strategy for Preparing Highly Stable PBA/Ti3C2Tx MXene toward Lithium-Ion Batteries via Chemical Transformation. ACS Applied Materials & Interfaces, 14, 15298-15306.
https://doi.org/10.1021/acsami.2c01382
Sun, J., Ye, H., Oh, J.A.S., et al. (2022) Alleviating Mechanical Degradation of Hexacyanoferrate via Strain Locking during Na Insertion/Extraction for Full Sodium Ion Battery. Nano Research, 15, 2123-2129.
https://doi.org/10.1007/s12274-021-3844-7
Okubo, M., Li, C.H. and Talham, D.R. (2014) High Rate Sodium Ion Insertion into Core-Shell Nanoparticles of Prussian Blue Analogues. Chemical Communications, 50, 1353-1355.
https://doi.org/10.1039/C3CC47607C
Peng, J., Gao, Y., Zhang, H., et al. (2022) Ball Milling Solid-State Synthesis of Highly Crystalline Prussian Blue Analogue Na2-XMnFe(CN)6 Cathodes for All-Climate Sodium-Ion Batteries. Angewandte Chemie International Edition, 61, e202205867.
https://doi.org/10.1002/anie.202205867
Deng, L., Qu, J., Niu, X., et al. (2021) Defect-Free Potassium Manganese Hexacyanoferrate Cathode Material for High-Performance Potassium-Ion Batteries. Nature Communications, 12, Article No. 2167.
https://doi.org/10.1038/s41467-021-22499-0
Jiang, Y., Shen, L., Ma, H., et al. (2022) A Low-Strain Metal Organic Framework for Ultra-Stable and Long-Life Sodium-Ion Batteries. Journal of Power Sources, 541, Article 231701.
https://doi.org/10.1016/j.jpowsour.2022.231701
Wang, Z., Huang, Y., Chu, D., et al. (2021) Continuous Conductive Networks Built by Prussian Blue Cubes and Mesoporous Carbon Lead to Enhanced Sodium-Ion Storage Performances. ACS Applied Materials & Interfaces, 13, 38202-38212.
https://doi.org/10.1021/acsami.1c06634
Nie, P., Yuan, J., Wang, J., et al. (2017) Prussian Blue Analogue with Fast Kinetics through Electronic Coupling for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 9, 20306-20312.
https://doi.org/10.1021/acsami.7b05178
Zhang, L., Meng, T., Mao, B., et al. (2017) Multifunctional Prussian Blue Analogous@Polyaniline Core-Shell Nanocubes for Lithium Storage and Overall Water Splitting. RSC Advances, 7, 50812-50821.
https://doi.org/10.1039/C7RA10292E
Xu, C., Yang, Z., Zhang, X., et al. (2021) Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries. Nano-Micro Letters, 13, Article No. 166.
https://doi.org/10.1007/s40820-021-00700-9
Wessells, C.D., Peddada, S.V., Huggins, R.A., et al. (2011) Nickel Hexacyanoferrate Nanoparticle Electrodes for Aqueous Sodium and Potassium Ion Batteries. Nano Letters, 11, 5421-5425.
https://doi.org/10.1021/nl203193q
Shen, L., Jiang, Y., Liu, Y., et al. (2020) High-Stability Monoclinic Nickel Hexacyanoferrate Cathode Materials for Ultrafast Aqueous Sodium Ion Battery. Chemical Engineering Journal, 388, Article 124228.
https://doi.org/10.1016/j.cej.2020.124228
Wessells, C.D., Huggins, R.A. and Cui, Y. (2011) Copper Hexacyanoferrate Battery Electrodes with Long Cycle Life and High Power. Nature Communications, 2, Article No. 550.
https://doi.org/10.1038/ncomms1563
Lee, J., Baek, J., Kim, Y., et al. (2023) Cu-Substituted Prussian White with Low Crystal Defects as High-Energy Cathode Materials for Sodium-Ion Batteries. Materials Today Chemistry, 33, Article 101741.
https://doi.org/10.1016/j.mtchem.2023.101741
Wu, X.-Y., Sun, M.-Y., Shen, Y.-F., et al. (2014) Energetic Aqueous Rechargeable Sodium-Ion Battery Based on Na2CuFe(CN)6-NaTi2(PO4)3 Intercalation Chemistry. ChemSusChem, 7, 407-411.
https://doi.org/10.1002/cssc.201301036
Nakamoto, K., Sakamoto, R., Ito, M., et al. (2017) Effect of Concentrated Electrolyte on Aqueous Sodium-Ion Battery with Sodium Manganese Hexacyanoferrate Cathode. Electrochemistry, 85, 179-185.
https://doi.org/10.5796/electrochemistry.85.179
Lamprecht, X., Speck, F., Marzak, P., et al. (2022) Electrolyte Effects on the Stabilization of Prussian Blue Analogue Electrodes in Aqueous Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 14, 3515-3525.
https://doi.org/10.1021/acsami.1c21219
Baidu
map