目前,锂离子电池被应用在多种储能领域,锂资源的持续消耗导致锂离子电池的成本高昂。由于丰富的钠资源储量以及价格优势,钠离子电池被认为是一类具潜力的新型储能装置。相对于锂离子来说,钠离子较大的离子半径对于电极材料的稳定性存在威胁。普鲁士蓝类似物具有易于调控的骨架结构、简单的合成工艺、较低的成本和环境友好等特点,适合作为钠离子电池正极材料。本文总结了普鲁士蓝类似物的结构与电化学性能之间的关系,并对其作为钠离子电池电极材料的研究方向进行了展望。 Currently, with the application of lithium-ion batteries in a variety of energy storage fields, the continuous depletion of lithium resources and its rising price have led to the high cost of lithium-ion batteries. Sodium-ion batteries are a potential new type of energy storage device due to their abundant sodium resource reserves and price advantages. The larger ionic radius of sodium ions is a threat to the stability of the electrode material in sodium-ion batteries compared to lithium-ion batteries. Prussian blue analogues are a suitable class of materials for sodium-ion battery electrode materials because of their easily regulated backbone structure, simple synthesis process, low cost, and environmental friendliness. In this paper, the relationship between the structure and electrochemical properties of Prussian blue analogues is summarized, and the development direction of them as electrode materials for sodium-ion batteries is prospected.
普鲁士蓝类似物,钠离子电池,正极材料, Prussian Blue Analogues
Sodium-Ion Batteries
Cathode Materials
摘要
Application Progress of Prussian Blue Analogues as Cathode Materials for Sodium-Ion Batteries
Xiaojie Wang, Jie Cui, Taotao Wang
School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou Gansu
Received: May 4th, 2024; accepted: May 24th, 2024; published: May 31st, 2024
ABSTRACT
Currently, with the application of lithium-ion batteries in a variety of energy storage fields, the continuous depletion of lithium resources and its rising price have led to the high cost of lithium-ion batteries. Sodium-ion batteries are a potential new type of energy storage device due to their abundant sodium resource reserves and price advantages. The larger ionic radius of sodium ions is a threat to the stability of the electrode material in sodium-ion batteries compared to lithium-ion batteries. Prussian blue analogues are a suitable class of materials for sodium-ion battery electrode materials because of their easily regulated backbone structure, simple synthesis process, low cost, and environmental friendliness. In this paper, the relationship between the structure and electrochemical properties of Prussian blue analogues is summarized, and the development direction of them as electrode materials for sodium-ion batteries is prospected.
Keywords:Prussian Blue Analogues, Sodium-Ion Batteries, Cathode Materials
其次,在有机系钠离子电池中普鲁士蓝和普鲁士蓝类似物中过量的水含量对于其电化学性能有不利的影响。早期研究主要集中在六氰基亚铁盐自分解合成普鲁士蓝类似物,例如:You等 [
21
] 在60℃下通过盐酸促使部分六氰基亚铁酸根缓慢分解释放亚铁离子,这些亚铁离子与残余的六氰基亚铁酸根进行配位反应合成了普鲁士蓝(HQ-NaFe)。图3(a)所示的热重分析可以看出,与快速沉淀法合成的普鲁士蓝(LQ-NaFe)相比,HQ-NaFe的水质量分数降低了5%,并且HQ-NaFe的热稳定性显著增强。此外,在倍率性能测试中,HQ-NaFe在0.6 A g−1下的比容量为70 mAh g−1,而LQ-NaFe的比容量几乎为零(图3(b))。然而,这种合成工艺由于铁源的限制,能够合成的普鲁士蓝类似物种类是有限的。
与传统共沉淀法相比,螯合剂辅助共沉淀法在合成过程中螯合剂与六氰基亚铁酸根配体竞争金属离子,能够有效地减缓反应速率,得到具有更高结晶度的普鲁士蓝类似物 [
32
] 。Jiang等 [
33
] 采用二乙烯三胺五乙酸二钠(Na2DPTA)辅助共沉淀法合成了普鲁士蓝类似物(NiHCF-NCs)。NiHCF-NCs在4.0 A g−1的高电流密度下放电比容量为64.5 mAh g−1,快速共沉淀法合成的NiHCF-Bulks在4.0 A g−1下容量仅为17.6 mAh g−1。因此,实现水含量和空位缺陷的减少,主要依赖于减缓反应速率,增加晶体的结晶度。此外,相对于另外两种方法,螯合剂辅助共沉淀法由于原料低廉,合成装置简易,组分易于调控等优势具有更大的工业化应用前景。
普鲁士蓝和普鲁士蓝类似物存在本征缺陷——电导性差。处理该本征缺陷的主要手段是将普鲁士蓝和普鲁士蓝类似物与具有高导电性的碳基等材料进行复合 [
36
] 。例如:Wang等 [
34
] 通过水热反应让普鲁士蓝与有序介孔碳(CMK-3)复合得到了N-PB@CMK。如图4(a)所示,与N-PB相比,N-PB@CMK的电荷转移电阻为478.5 Ω,远低于未添加CMK-3的普鲁士蓝类似物(T-PB)的944.2 Ω。在3.2 A g−1的高电流密度下,N-PB@CMK表现出了87 mAh g−1的比容量,而T-PB仅为22 mAh g−1(图4(b))。虽然该优化方案能够有效地提升普鲁士蓝的导电性,但是其基于受限于单一铁源的水热法。因此,该优化方案适用的普鲁士蓝类似物种类是有限的。而Nie等 [
35
] 通过7,7,8,8-四氰基喹啉甲烷桥联普鲁士蓝类似物形成了电荷转移的“高速公路”,并将这种复合材料命名为NiHCF/TCNQ,NiHCF/TCNQ的电荷转移电阻低于纯NiHCF (图4(c))。NiHCF/TCNQ在0.02 A g−1下的比容量为56.4 mAh g−1,当电流密度增大至0.2 A g−1时其仍能释放出47.6 mAh g−1的比容量,NiHCF仅为29.4 mAh g−1(图4(d))。另外,该方案是基于共沉淀法制备普鲁士蓝类似物,具有一定的普适性。综上所述,提高普鲁士蓝和普鲁士蓝类似物的导电性,可以增强其倍率性能和提升比容量。
在水系钠离子电池中的研究最为广泛的普鲁士蓝类似物是镍基普鲁士蓝类似物和铜基普鲁士蓝类似物。相对于其它普鲁士蓝类似物,镍基普鲁士蓝类似物由于镍的电化学惰性,其具有更高的机械强度和结构稳定性。Wessells等 [
38
] 通过共沉淀法制备了K0.6Ni1.2Fe(CN)6·3.6H2O,由于Na+嵌入和脱出的结构变化和结构应力变化较小,在0.05 A g−1的电流密度下循环5000次后,容量保持率为66%。证明了镍基普鲁士蓝类似在水系钠离子电池中具有较好的循环稳定性。Shen等 [
39
] 采用了柠檬酸钠辅助共沉淀法合成了单斜相Na1.45Ni[Fe(CN)6]0.87·3.02H2O(m-NiHCF),与无螯合剂共沉淀法合成出来的立方相镍基普鲁士蓝类似(Na1.21Ni[Fe(CN)6]0.86·3.21H2O,c-NiHCF)相比,m-NiHCF的结晶水质量分数下降了1.23%,所以m-NiHCF的空位减少。m-NiHCF在0.1 A g−1的电流密度下的初始比容量达到了70.1 mAh g−1,c-NiHCF仅为60.8 mAh g−1。即使在2.0 A g−1的高电流密度下,m-NiHCF也具有53.2 mAh g−1的比容量,c-NiHCF仅为18.2 mAh g−1。根据上述研究,普鲁士蓝类似物作为水系钠离子电池正极材料,也可以通过减缓合成速率增强其电化学性能。铜基普鲁士蓝类似物由于结构中与氮配位的铜能够提升与碳配位的铁的氧化还原反应活性,并且铜具有电化学惰性能够增加结构稳定性,所以在水系钠离子电池中被广泛研究 [
40
] [
41
] 。Wang等 [
7
] 通过共沉淀法原位聚合制备了铜基普鲁士蓝类似物与科琴黑复合材料(CuHCF),改善了铜基普鲁士蓝类似物的导电性。在0.3 A g−1的电流密度下,CuHCF在饱和硝酸钠水溶液中循环25次后比容量稳定在80 mAh g−1,继续循环225次后比容量几乎无衰减。Wu等 [
42
] 报道了通过共沉淀合成了Na2CuFe(CN)6富钠的正极材料并与NaTi2(PO4)3负极组成了全电池,平均放电电压达到1.4 V,比能量为48 Wh kg−1。根据上述结果,铜基普鲁士蓝类似物在水系钠离子电池正极领域具有着良好的应用前景。此外,可以认为富钠(A = Na, x ≥ 1)的普鲁士蓝类似物在水系钠离子电池中通常具有更好的比容量表现。
王晓杰,崔 洁,王涛涛. 普鲁士蓝类似物作为钠离子电池正极材料的应用进展Application Progress of Prussian Blue Analogues as Cathode Materials for Sodium-Ion Batteries[J]. 分析化学进展, 2024, 14(02): 122-130. https://doi.org/10.12677/aac.2024.142015
参考文献References
Goodenough, J.B. (2018) How We Made the Li-Ion Rechargeable Battery. Nature Electronics, 1, 204. https://doi.org/10.1038/s41928-018-0048-6
Li, Y., Zhao, J., Hu, Q., et al. (2022) Prussian Blue Analogs Cathodes for Aqueous Zinc Ion Batteries. Materials Today Energy, 29, Article 101095. https://doi.org/10.1016/j.mtener.2022.101095
Shu, W., Li, J., Zhang, G., et al. (2024) Progress on Transition Metal Ions Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium-/Potassium-Ion Batteries. Nano-Micro Letters, 16, Article No. 128. https://doi.org/10.1007/s40820-024-01355-y
Bors, R., Yun, J., Marzak, P., et al. (2018) Chromium(II) Hexacyanoferrate-Based Thin Films as a Material for Aqueous Alkali Metal Cation Batteries. ACS Omega, 3, 5111-5115. https://doi.org/10.1021/acsomega.8b00273
Liu, Y., Fan, S., Gao, Y., et al. (2023) Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries. Small, 19, Article 2302687. https://doi.org/10.1002/smll.202302687
Peng, C., Xu, X., Li, F., et al. (2023) Recent Progress of Promising Cathode Candidates for Sodium-Ion Batteries: Current Issues, Strategy, Challenge, and Prospects. Small Structures, 4, Article 2300150. https://doi.org/10.1002/sstr.202300150
Wang, B., Wang, X., Liang, C., et al. (2019) An All-Prussian-Blue-Based Aqueous Sodium-Ion Battery. ChemElectroChem, 6, 4848-4853. https://doi.org/10.1002/celc.201901223
Hwang, J.-Y., Myung, S.-T. and Sun, Y.-K. (2017) Sodium-Ion Batteries: Present and Future. Chemical Society Reviews, 46, 3529-3614. https://doi.org/10.1039/C6CS00776G
Delmas, C. (2018) Sodium and Sodium-Ion Batteries: 50 Years of Research. Advanced Energy Materials, 8, Article 1703137. https://doi.org/10.1002/aenm.201703137
Deng, J., Luo, W.-B., Chou, S.-L., et al. (2018) Sodium-Ion Batteries: From Academic Research to Practical Commercialization. Advanced Energy Materials, 8, Article 1701428. https://doi.org/10.1002/aenm.201701428
He, M., Davis, R., Chartouni, D., et al. (2022) Assessment of the First Commercial Prussian Blue Based Sodium-Ion Battery. Journal of Power Sources, 548, Article 232036. https://doi.org/10.1016/j.jpowsour.2022.232036
Wu, H., Hao, J., Jiang, Y., et al. (2024) Alkaline-Based Aqueous Sodium-Ion Batteries for Large-Scale Energy Storage. Nature Communications, 15, Article No. 575. https://doi.org/10.1038/s41467-024-44855-6
Peters, J., Buchholz, D., Passerini, S., et al. (2016) Life Cycle Assessment of Sodium-Ion Batteries. Energy & Environmental Science, 9, 1744-1751. https://doi.org/10.1039/C6EE00640J
Zhou, A., Cheng, W., Wang, W., et al. (2020) Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances toward High-Performance Sodium and Potassium Ion Batteries. Advanced Energy Materials, 11, Article 2000943. https://doi.org/10.1002/aenm.202000943
Wu, X., Ru, Y., Bai, Y., et al. (2022) PBA Composites and Their Derivatives in Energy and Environmental Applications. Coordination Chemistry Reviews, 451, Article 214260. https://doi.org/10.1016/j.ccr.2021.214260
Li, W.-J., Han, C., Cheng, G., et al. (2019) Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Small, 15, Article 1900470. https://doi.org/10.1002/smll.201900470
Song, X., Song, S., Wang, D., et al. (2021) Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis. Small Methods, 5, Article 2001000. https://doi.org/10.1002/smtd.202001000
Yi, H., Qin, R., Ding, S., et al. (2020) Structure and Properties of Prussian Blue Analogues in Energy Storage and Conversion Applications. Advanced Functional Materials, 31, Article 2006970. https://doi.org/10.1002/adfm.202006970
Avila, Y., Acevedo-Peña, P., Reguera, L., et al. (2022) Recent Progress in Transition Metal Hexacyanometallates: From Structure to Properties and Functionality. Coordination Chemistry Reviews, 453, Article 214274. https://doi.org/10.1016/j.ccr.2021.214274
Peng, J., Zhang, W., Liu, Q., et al. (2022) Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present and Future. Advanced Materials, 34, Article 2108384. https://doi.org/10.1002/adma.202108384
You, Y., Wu, X.-L., Yin, Y.-X., et al. (2014) High-Quality Prussian Blue Crystals as Superior Cathode Materials for Room-Temperature Sodium-Ion Batteries. Energy & Environmental Science, 7, 1643-1647. https://doi.org/10.1039/C3EE44004D
Neff, V.D. (1978) Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. Journal of the Electrochemical Society, 125, 886. https://doi.org/10.1149/1.2131575
Chen, Z.-Y., Fu, X.-Y., Zhang, L.-L., et al. (2022) High-Performance Fe-Based Prussian Blue Cathode Material for Enhancing the Activity of Low-Spin Fe by Cu Doping. ACS Applied Materials & Interfaces, 14, 5506-5513. https://doi.org/10.1021/acsami.1c23793
Lu, Y., Wang, L., Cheng, J., et al. (2012) Prussian Blue: A New Framework of Electrode Materials for Sodium Batteries. Chemical Communications, 48, 6544-6546. https://doi.org/10.1039/c2cc31777j
Xie, B., Sun, B., Gao, T., et al. (2022) Recent Progress of Prussian Blue Analogues as Cathode Materials for Nonaqueous Sodium-Ion Batteries. Coordination Chemistry Reviews, 460, Article 214478. https://doi.org/10.1016/j.ccr.2022.214478
Zhao, J., Wang, J., Bi, R., et al. (2021) General Synthesis of Multiple-Cores@Multiple-Shells Hollow Composites and Their Application to Lithium-Ion Batteries. Angewandte Chemie International Edition, 60, 25719-25722. https://doi.org/10.1002/anie.202110982
Xue, Q., Li, L., Huang, Y., et al. (2019) Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via in situ Polymerization Coating. ACS Applied Materials & Interfaces, 11, 22339-22345. https://doi.org/10.1021/acsami.9b04579
Gao, X., Zheng, Y., Chang, J., et al. (2022) Universal Strategy for Preparing Highly Stable PBA/Ti3C2Tx MXene toward Lithium-Ion Batteries via Chemical Transformation. ACS Applied Materials & Interfaces, 14, 15298-15306. https://doi.org/10.1021/acsami.2c01382
Sun, J., Ye, H., Oh, J.A.S., et al. (2022) Alleviating Mechanical Degradation of Hexacyanoferrate via Strain Locking during Na Insertion/Extraction for Full Sodium Ion Battery. Nano Research, 15, 2123-2129. https://doi.org/10.1007/s12274-021-3844-7
Okubo, M., Li, C.H. and Talham, D.R. (2014) High Rate Sodium Ion Insertion into Core-Shell Nanoparticles of Prussian Blue Analogues. Chemical Communications, 50, 1353-1355. https://doi.org/10.1039/C3CC47607C
Peng, J., Gao, Y., Zhang, H., et al. (2022) Ball Milling Solid-State Synthesis of Highly Crystalline Prussian Blue Analogue Na2-XMnFe(CN)6 Cathodes for All-Climate Sodium-Ion Batteries. Angewandte Chemie International Edition, 61, e202205867. https://doi.org/10.1002/anie.202205867
Deng, L., Qu, J., Niu, X., et al. (2021) Defect-Free Potassium Manganese Hexacyanoferrate Cathode Material for High-Performance Potassium-Ion Batteries. Nature Communications, 12, Article No. 2167. https://doi.org/10.1038/s41467-021-22499-0
Jiang, Y., Shen, L., Ma, H., et al. (2022) A Low-Strain Metal Organic Framework for Ultra-Stable and Long-Life Sodium-Ion Batteries. Journal of Power Sources, 541, Article 231701. https://doi.org/10.1016/j.jpowsour.2022.231701
Wang, Z., Huang, Y., Chu, D., et al. (2021) Continuous Conductive Networks Built by Prussian Blue Cubes and Mesoporous Carbon Lead to Enhanced Sodium-Ion Storage Performances. ACS Applied Materials & Interfaces, 13, 38202-38212. https://doi.org/10.1021/acsami.1c06634
Nie, P., Yuan, J., Wang, J., et al. (2017) Prussian Blue Analogue with Fast Kinetics through Electronic Coupling for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 9, 20306-20312. https://doi.org/10.1021/acsami.7b05178
Zhang, L., Meng, T., Mao, B., et al. (2017) Multifunctional Prussian Blue Analogous@Polyaniline Core-Shell Nanocubes for Lithium Storage and Overall Water Splitting. RSC Advances, 7, 50812-50821. https://doi.org/10.1039/C7RA10292E
Xu, C., Yang, Z., Zhang, X., et al. (2021) Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries. Nano-Micro Letters, 13, Article No. 166. https://doi.org/10.1007/s40820-021-00700-9
Wessells, C.D., Peddada, S.V., Huggins, R.A., et al. (2011) Nickel Hexacyanoferrate Nanoparticle Electrodes for Aqueous Sodium and Potassium Ion Batteries. Nano Letters, 11, 5421-5425. https://doi.org/10.1021/nl203193q
Shen, L., Jiang, Y., Liu, Y., et al. (2020) High-Stability Monoclinic Nickel Hexacyanoferrate Cathode Materials for Ultrafast Aqueous Sodium Ion Battery. Chemical Engineering Journal, 388, Article 124228. https://doi.org/10.1016/j.cej.2020.124228
Wessells, C.D., Huggins, R.A. and Cui, Y. (2011) Copper Hexacyanoferrate Battery Electrodes with Long Cycle Life and High Power. Nature Communications, 2, Article No. 550. https://doi.org/10.1038/ncomms1563
Lee, J., Baek, J., Kim, Y., et al. (2023) Cu-Substituted Prussian White with Low Crystal Defects as High-Energy Cathode Materials for Sodium-Ion Batteries. Materials Today Chemistry, 33, Article 101741. https://doi.org/10.1016/j.mtchem.2023.101741
Wu, X.-Y., Sun, M.-Y., Shen, Y.-F., et al. (2014) Energetic Aqueous Rechargeable Sodium-Ion Battery Based on Na2CuFe(CN)6-NaTi2(PO4)3 Intercalation Chemistry. ChemSusChem, 7, 407-411. https://doi.org/10.1002/cssc.201301036
Nakamoto, K., Sakamoto, R., Ito, M., et al. (2017) Effect of Concentrated Electrolyte on Aqueous Sodium-Ion Battery with Sodium Manganese Hexacyanoferrate Cathode. Electrochemistry, 85, 179-185. https://doi.org/10.5796/electrochemistry.85.179
Lamprecht, X., Speck, F., Marzak, P., et al. (2022) Electrolyte Effects on the Stabilization of Prussian Blue Analogue Electrodes in Aqueous Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 14, 3515-3525. https://doi.org/10.1021/acsami.1c21219