气候变暖是影响人类生存和社会发展的重大自然挑战,通过研究不同温度气候条件下生物的生态和形态差异,从而精准预测生物对未来持续升温的响应,是宜居地球持续发展的关键。本研究通过对食蚊鱼( Gambusia affinis)进行控温培养六个月,观察其在26℃、28℃和30℃水温条件下培养形态和生态上的差异,来预测未来持续变暖情境下入侵鱼类对本土淡水物种多样性的潜在影响。实验结果显示高温组样本体长小,符合伯格曼法则。根据实验结果可以预测:未来不同强度气候变暖背景下,食蚊鱼形态会产生明显差异,升温2℃和4℃的情境,平均体长分别会减小18%和26%左右。作为一种喜食鱼卵的小型入侵鱼类,食蚊鱼显示出非常快速的高温适应能力,这可能会助其种群随着未来气候变暖进一步扩张,对本土鱼类的多样性和淡水生态系统产生更大威胁。 Climate warming is a major natural challenge to future human survival and social development. Precise predictions on the biotic responses to continuing warming play key roles the potential adaptions. This research conducted temperature-controlled (26˚C, 28˚C and 30˚C) culture experiments on the Gambusia affi nis for six months, observing their morphological and ecological variations, for predicting the impact on freshwater ecosystem by invasive fishes under future climatic warming. The results show that the size (body lengths) of the individuals in higher temperatures is smaller than the group of lower temperature, in agreement with the Bergmann’s rule. Thus, we predict that: the mean size of Gambusia affinis would decrease 18.0% and 26% for temperature rise of 2˚C and 4˚C, respectively. As a small-sized fish eggs predator, Gambusia affinis show rapid morphological and ecological adaptions to higher temperatures, implying huge challenge to the future protection on local fishes and freshwater ecosystem under future global warming scenarios.
Culture Experiment of Gambusia affinis for Predicting Its Morphological Response to Climate Warming
Aoxiang Huang1,2*, Jiaxin Han1,2*, Jiaying Chai1,2, Li Tian1#
1State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan Hubei
2School of Environment, China University of Geosciences (Wuhan), Wuhan Hubei
Received: Apr. 25th, 2024; accepted: May 24th, 2024; published: May 31st, 2024
ABSTRACT
Climate warming is a major natural challenge to future human survival and social development. Precise predictions on the biotic responses to continuing warming play key roles the potential adaptions. This research conducted temperature-controlled (26˚C, 28˚C and 30˚C) culture experiments on the Gambusia affinis for six months, observing their morphological and ecological variations, for predicting the impact on freshwater ecosystem by invasive fishes under future climatic warming. The results show that the size (body lengths) of the individuals in higher temperatures is smaller than the group of lower temperature, in agreement with the Bergmann’s rule. Thus, we predict that: the mean size of Gambusia affinis would decrease 18.0% and 26% for temperature rise of 2˚C and 4˚C, respectively. As a small-sized fish eggs predator, Gambusia affinis show rapid morphological and ecological adaptions to higher temperatures, implying huge challenge to the future protection on local fishes and freshwater ecosystem under future global warming scenarios.
黄傲翔,韩佳欣,柴家颖,田 力. 食蚊鱼(Gambusia affinis)响应气候变暖的培养实验Culture Experiment of Gambusia affinis for Predicting Its Morphological Response to Climate Warming[J]. 气候变化研究快报, 2024, 13(03): 665-670. https://doi.org/10.12677/ccrl.2024.133075
参考文献References
Lenton, T.M., Xu, C., Abrams, J.F., Ghadiali, A., Loriani, S., Sakschewski, B., Zimm, C., Ebi, K.L., Dunn, R.R., Svenning, J.-C. and Scheffer, M. (2023) Quantifying the Human Cost of Global Warming. Nature Sustainability, 6, 1237-1247. https://doi.org/10.1038/s41893-023-01132-6
Walther, G., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J., Hoegh-Guldberg, O. and Bairlein, F. (2002) Ecological Responses to Recent Climate Change. Nature, 416, 389-395. https://doi.org/10.1038/416389a
Blois, J.L., Zarnetske, P.L., Fitzpatrick, M.C. and Finnegan, S. (2013) Climate Change and the Past, Present, and Future of Biotic Interactions. Science, 341, 499-504. https://doi.org/10.1126/science.1237184
Parmesan, C. (1996) Climate and Species’ Range. Nature, 382, 765-766. https://doi.org/10.1038/382765a0
Chen, I., Hill, J.K., Ohlemüller, R., Roy, D.B. and Thomas, C.D. (2011) Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333, 1024-1026. https://doi.org/10.1126/science.1206432
IPCC (2022) Climate Change 2022: Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
Tian, L. and Benton, M.J. (2020) Predicting Biotic Responses to Future Climate Warming with Classic Ecogeographic Rules. Current Biology, 30, R744-R749. https://doi.org/10.1016/j.cub.2020.06.003
Sheridan, J.A. and Bickford, D. (2011) Shrinking Body Size as an Ecological Response to Climate Change. Nature Climate Change, 1, 401-406. https://doi.org/10.1038/nclimate1259
Leiva, F.P., Calosi, P. and Verberk, W.C.E.P. (2019) Scaling of Thermal Tolerance with Body Mass and Genome Size in Ectotherms: A Comparison between Water-and Air-Breathers. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, Article 20190035. https://doi.org/10.1098/rstb.2019.0035
Solokas, M.A., Feiner, Z.S., Al Chokachy, R., Budy, P., Deweber, J.T., Sarvala, J., Sass, G.G., Tolentino, S.A., Walsworth, T.E. and Jensen, O.P. (2023) Shrinking Body Size and Climate Warming: Many Freshwater Salmonids Do Not Follow the Rule. Global Change Biology, 29, 2478-2492. https://doi.org/10.1111/gcb.16626
Belk, M.C. and Houston, D.D. (2002) Bergmann’s Rule in Ectotherms: A Test Using Freshwater Fishes. American Naturalists, 160, 803-808. https://doi.org/10.1086/343880
Fernández-Torres, F., Martínez, P.A. and Olalla-Tárraga, M.Á. (2018) Shallow Water Ray-Finned Marine Fishes Follow Bergmann’s Rule. Basic and Applied Ecology, 33, 99-110. https://doi.org/10.1016/j.baae.2018.09.002
Saunders, R.A. and Tarling, G.A. (2018) Southern Ocean Mesopelagic Fish Comply with Bergmann’s Rule. The American Naturalist, 191, 343-351. https://doi.org/10.1086/695767
Fisher, J.A., Frank, K.T. and Leggett, W.C. (2010) Breaking Bergmann’s Rule: Truncation of Northwest Atlantic Marine Fish Body Sizes. Ecology, 91, 2499-2505. https://doi.org/10.1890/09-1914.1
张登成, 熊文, 陶捐, 陈毅峰. 武汉地区西部食蚊鱼的生长、死亡系数及种群补充模式[J]. 生态学报, 2016, 36(2): 508-517.
陈银瑞, 宇和纮, 褚新洛. 云南青鳉鱼类的分类和分布(鳉形目: 青鳉科) [J]. 动物分类学报, 1989(2): 239-246.
陈国柱. 入侵种食蚊鱼与土著濒危物种唐鱼的种间关系研究[D]: [博士学位论文]. 广州: 暨南大学, 2010.
Vondracek, B., Wurtsbaugh, W.A. and Cech, J.J. (1988) Growth and Reproduction of the Mosquitofish, Gambusia affinis, in Relation to Temperature and Ration Level: Consequences for Life History. Environmental Biology of Fishes, 21, 45-57. https://doi.org/10.1007/BF02984442
Pyke, G.H. (2005) A Review of the Biology of Gambusia affinis and G.holbrooki. Reviews in Fish Biology and Fisheries, 15, 339-365. https://doi.org/10.1007/s11160-006-6394-x
肖乔芝, 陈利娟, 金锦锦, 仇玉萍, 陈国柱. 青鳉与食蚊鱼竞争排斥的生态形态学解释[J]. 应用生态学报, 2020, 31(6): 2087-2097.
Pan, J.H., Su, B.Z. and Zheng, W.B. (1980) Biological Characteristics of Gambusia affinis and the Prospects for Its Use for Mosquito Control. Journal of South China Normal University, 1, 117-138.
Krumholz, L.A. (1948) Reproduction in the Western Mosquitofish, Gambusia affinis affinis (Baird & Girard), and Its Use in Mosquito Control. Ecological Monographs, 18, 1-43. https://doi.org/10.2307/1948627
严云志, 陈毅峰, 陶捐. 食蚊鱼生态入侵的研究进展[J]. 生态学杂志, 2009, 28(5): 950-958.
Blackburn, T.M., Gaston, K.J. and Loder, N. (1999) Geographic Gradients in Body Size: A Clarification of Bergmann’s Rule. Diversity and Distributions, 5, 165-174. https://doi.org/10.1046/j.1472-4642.1999.00046.x
Meiri, S. and Dayan, T. (2003) On the Validity of Bergmann’s Rule. Journal of Biogeography, 30, 331-351. https://doi.org/10.1046/j.1365-2699.2003.00837.x
汪国静. 不同增温情景下西部食蚊鱼的生长、繁殖与死亡特征研究[D]: [硕士学位论文]. 昆明: 云南大学, 2022.
Atkinson, D. (1994) Temperature and Organism Size—A Biological Law for Ectotherms? Advances in Ecological Research, 25, 1-58. https://doi.org/10.1016/S0065-2504(08)60212-3
Botsford, L.W., Vondracek, B., Wainwright, T.C., Linden, A.L., Kope, R.G., Reed, D.E. and Cech, J.J. (1987) Population Development of the Mosquitofish, Gambusia affinis, in Rice Fields. Environmental Biology of Fishes, 20, 143-154. https://doi.org/10.1007/BF00005293
Wootton, H.F., Morrongiello, J.R. and Audzijonyte, A. (2020) Estimating Maturity from Size-at-Age Data: Are Real-World Fisheries Datasets up to the Task? Reviews in Fish Biology and Fisheries, 30, 681-697. https://doi.org/10.1007/s11160-020-09617-9
Polidori, C., Gutiérrez Cánovas, C., Sánchez, E., Tormos, J., Castro, L. and Sánchez Fernández, D. (2020) Climate Change-Driven Body Size Shrinking in a Social Wasp. Ecological Entomology, 45, 130-141. https://doi.org/10.1111/een.12781
胡玲红, 王映, 王化敏, 陈良标. 不同温度胁迫对青鳉鳃凋亡的影响[J]. 大连海洋大学学报, 2021, 36(6): 929-936.
王润萍, 戴铃灵, 陈雅飞, 徐永健. 短期温度、盐度胁迫对海洋青鳉鱼(Oryzias melastigma)摄食行为及抗氧化的影响[J]. 海洋与湖沼, 2019, 50(2): 378-387.
周龙艳. 长江流域几种珍稀鱼类对环境因子胁迫的生理与行为响应研究[D]: [硕士学位论文]. 重庆: 重庆师范大学, 2021.