病毒免疫学研究在当下占据着重要地位,对宿主有不可或缺的影响,病毒的结构简单,仅由蛋白质和核酸组成,但是当下大量病原体都属于病毒,大致可以将病毒分成DNA病毒和RNA病毒两类,他们会通过七个阶段去复制赖以生存,经过宿主细胞的识别,激发宿主的先天性和适应性免疫反应对抗病毒,然而,病毒可能被识别后清除或者会通过逃逸机制躲避宿主的免疫系统攻击,变异后的病毒则会有更强的逃逸功能。目前,疫苗的研究带来了显著发展,积极解决疫苗研发的挑战,同时引用创新的治疗方法控制病毒。通过研究病毒的变异和逃逸机制,提供了未来的研究方向和重点,为癌症、传染病等疾病的预防和治疗提供新思路。通过病毒免疫学的研究,为疫苗开发、保障生物安全、开发新技术都提供了明确的方向。 Viral immunology research occupies an important position in the present and has an indispensable influence on the host. The structure of the virus is simple, only consisting of protein and nucleic acid, but now a large number of pathogens belong to the virus. The virus can be roughly divided into DNA viruses and RNA viruses, which will through seven stages to replicate, after the host cell identification, stimulate host innate and adaptive immune response to antiviral. However, the virus may be identified after clear or through an escape mechanism from the host immune system attack, while mutation of the virus will have a stronger escape function. Currently, vaccine research has brought significant development, actively addressing the challenges of vaccine development, while citing innovative treatments to control the virus. By studying the mechanism of virus mutation and escape, it provides future research directions and priorities, and provides new ideas for the prevention and treatment of cancer, infectious diseases and other diseases. Through the research of viral immunology, it provides a clear direction for vaccine development, biosafety guarantee and the development of new technologies.
School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai Guangdong
Received: Apr. 20th, 2024; accepted: May 20th, 2024; published: May 29th, 2024
ABSTRACT
Viral immunology research occupies an important position in the present and has an indispensable influence on the host. The structure of the virus is simple, only consisting of protein and nucleic acid, but now a large number of pathogens belong to the virus. The virus can be roughly divided into DNA viruses and RNA viruses, which will through seven stages to replicate, after the host cell identification, stimulate host innate and adaptive immune response to antiviral. However, the virus may be identified after clear or through an escape mechanism from the host immune system attack, while mutation of the virus will have a stronger escape function. Currently, vaccine research has brought significant development, actively addressing the challenges of vaccine development, while citing innovative treatments to control the virus. By studying the mechanism of virus mutation and escape, it provides future research directions and priorities, and provides new ideas for the prevention and treatment of cancer, infectious diseases and other diseases. Through the research of viral immunology, it provides a clear direction for vaccine development, biosafety guarantee and the development of new technologies.
冯思源,伍欣妍,罗展豪,涂传佳,刘晓田,江幸燕,刘家俊. 病毒免疫学研究进展Progress in Viral Immunology[J]. 免疫学研究, 2024, 06(02): 15-30. https://doi.org/10.12677/is.2024.62002
参考文献References
Breitbart, M. and Rohwer, F. (2005) Here a Virus, There a Virus, Everywhere the Same Virus? Trends in Microbiology, 13, 278-284. https://doi.org/10.1016/j.tim.2005.04.003
Martínez-Acuña, N., Lozano-Sepúlveda, S.A., Del Carmen Martínez-Guzmán, M. and Rivas-Estilla, A.M. (2022) Tiny Regulators in Viral Infection: Carving SARS-CoV-2 by MiRNAs. Microrna, 11, 185-189. https://doi.org/10.2174/2211536611666220816124650
Katsarou, K., Bardani, E., Kallemi, P. and Kalantidis, K. (2019) Viral Detection: Past, Present, and Future. Bioessays, 41, E1900049. https://doi.org/10.1002/bies.201900049
Paez-Espino, D., Eloe-Fadrosh, E.A., Pavlopoulos, G.A., Thomas, A.D., Huntemann, M., Mikhailova, N., Rubin, E., Ivanova, N.N. and Kyrpides, N.C. (2016) Uncovering Earth’s Virome. Nature, 536, 425-430. https://doi.org/10.1038/nature19094
Woolhouse, M. and Gaunt, E. (2007) Ecological Origins of Novel Human Pathogens. Critical Reviews in Microbiology, 33, 231-242. https://doi.org/10.1080/10408410701647560
Riedel, S. (2005) Edward Jenner and the History of Smallpox and Vaccination. Baylor University Medical Center Proceedings, 18, 21-25. https://doi.org/10.1080/08998280.2005.11928028
Zahra, A., Hussain, T. and Sherwani, S.K. (2020) Life after COVID-19 Outbreak: Expectations and Thoughts. Advancements in Life Sciences, 7, 208-214.
Roshal, D., Konevtsova, O., Lošdorfer Božič, A., et al. (2019) PH-Induced Morphological Changes of Proteinaceous Viral Shells. Scientific Reports, 9, Article No. 5341. https://doi.org/10.1038/s41598-019-41799-6
Mateu, M.G. (2013) Introduction: The Structural Basis of Virus Function. In: Mateu, M.G., Ed., Structure and Physics of Viruses: An Integrated Textbook, Springer, Berlin, 3-51. https://doi.org/10.1007/978-94-007-6552-8_1
Nayak, D.P. (2000) Virus Morphology, Replication, and Assembly. In: Hurst, C.J., Ed., Viral Ecology, Elsevier, Amsterdam, 63-124. https://doi.org/10.1016/B978-012362675-2/50004-5
Louten, J. (2016) Virus Structure and Classification. In: Louten, J., Ed., Essential Human Virology, Elsevier, Amsterdam, 19-29. https://doi.org/10.1016/B978-0-12-800947-5.00002-8
Hull, R. and Rima, B. (2020) Virus Taxonomy and Classification: Naming of Virus Species. Archives of Virology, 165, 2733-2736. https://doi.org/10.1007/s00705-020-04748-7
Ma, Z., Ni, G. and Damania, B. (2018) Innate Sensing of DNA Virus Genomes. Annual Review of Virology, 5, 341-362. https://doi.org/10.1146/annurev-virology-092917-043244
Chang, J. (2021) Adenovirus Vectors: Excellent Tools for Vaccine Development. Immune Network, 21, E6. https://doi.org/10.4110/in.2021.21.e6
Raja, P., Lee, J.S., Pan, D., Pesola, J.M., Coen, D.M. and Knipe, D.M. (2016) A Herpesviral Lytic Protein Regulates the Structure of Latent Viral Chromatin. MBio, 7, 1. https://doi.org/10.1128/mBio.00633-16
Turnell, A.S. and Grand, R.J. (2012) DNA Viruses and the Cellular DNA-Damage Response. Journal of General Virology, 93, 2076-2097. https://doi.org/10.1099/vir.0.044412-0
Kaján, G.L., Doszpoly, A., Tarján, Z.L., et al. (2020) Virus-Host Coevolution with a Focus on Animal and Human DNA Viruses. Journal of Molecular Evolution, 88, 41-56. https://doi.org/10.1007/s00239-019-09913-4
Payne, S. (2017) Introduction to RNA Viruses. In: Payne, S., Ed., Viruses, Elsevier, Amsterdam, 97-105. https://doi.org/10.1016/B978-0-12-803109-4.00010-6
Chen, Y.G. and Hur, S. (2022) Cellular Origins of DsRNA, Their Recognition and Consequences. Nature Reviews Molecular Cell Biology, 23, 286-301. https://doi.org/10.1038/s41580-021-00430-1
Šantak, M. and Matić, Z. (2022) The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses, 14, Article No. 521. https://doi.org/10.3390/v14030521
Strauss, J.H. and Strauss, E.G. (2008) Plus-Strand RNA Viruses. In: Strauss, J.H. and Strauss, E.G., Eds., Viruses and Human Disease, Elsevier, Amsterdam, 63-136. https://doi.org/10.1016/B978-0-12-373741-0.50006-4
Burrell, C.J., Howard, C.R. and Murphy, F.A. (2017) Virus Replication. In: Burrell, C.J., Howard, C.R. and Murphy, F.A., Eds., Fenner and White’s Medical Virology, Elsevier, Amsterdam, 39-55. https://doi.org/10.1016/B978-0-12-375156-0.00004-7
Louten, J. (2016) Virus Replication. In: Louten, J., Ed., Essential Human Virology, Elsevier, Amsterdam, 49-70. https://doi.org/10.1016/B978-0-12-800947-5.00004-1
Rampersad, S. and Tennant, P. (2018) Replication and Expression Strategies of Viruses. In: Tennant, P., Fermin, G. and Foster, J.E., Eds., Viruses, Elsevier, Amsterdam, 55-82. https://doi.org/10.1016/B978-0-12-811257-1.00003-6
Cann, A.J. (2008) Replication of Viruses. In: Mahy, B.W.J. and Van Regenmortel, M.H.V., Eds., Encyclopedia of Virology, Elsevier, Amsterdam, 406-412. https://doi.org/10.1016/B978-012374410-4.00486-6
Serva, S. and Nagy, P.D. (2006) Proteomics Analysis of the Tombusvirus Replicase: Hsp70 Molecular Chaperone Is Associated with the Replicase and Enhances Viral RNA Replication. Journal of Virology, 80, 2162-2169. https://doi.org/10.1128/JVI.80.5.2162-2169.2006
Pan, J.A., Peng, X., Gao, Y., et al. (2008) Genome-Wide Analysis of Protein-Protein Interactions and Involvement of Viral Proteins in SARS-CoV Replication. PLOS ONE, 3, E3299. https://doi.org/10.1371/journal.pone.0003299
Chen, X., Liu, S., Goraya, M.U., Maarouf, M., Huang, S. and Chen, J.L. (2018) Host Immune Response to Influenza a Virus Infection. Frontiers in Immunology, 9, Article No. 320. https://doi.org/10.3389/fimmu.2018.00320
Frazer, I.H. (2009) Interaction of Human Papillomaviruses with the Host Immune System: A Well Evolved Relationship. Virology, 384, 410-414. https://doi.org/10.1016/j.virol.2008.10.004
Diamond, M.S. and Kanneganti, T.D. (2022) Innate Immunity: The First Line of Defense against SARS-CoV-2. Nature Immunology, 23, 165-176. https://doi.org/10.1038/s41590-021-01091-0
Alcami, A., Ghazal, P. and Yewdell, J.W. (2002) Viruses in Control of the Immune System. Workshop on Molecular Mechanisms of Immune Modulation: Lessons from Viruses. EMBO Reports, 3, 927-932. https://doi.org/10.1093/embo-reports/kvf200
Duerkop, B.A. and Hooper, L.V. (2013) Resident Viruses and Their Interactions with the Immune System. Nature Immunology, 14, 654-659. https://doi.org/10.1038/ni.2614
Uematsu, S. and Akira, S. (2006) Innate Immune Recognition of Viral Infection. Uirusu, 56, 1-8. (In Japanese) https://doi.org/10.2222/jsv.56.1
Huang, X. and Yang, Y. (2009) Innate Immune Recognition of Viruses and Viral Vectors. Human Gene Therapy, 20, 293-301. https://doi.org/10.1089/hum.2008.141
Rouse, B.T. and Sehrawat, S. (2010) Immunity and Immunopathology to Viruses: What Decides the Outcome? Nature Reviews Immunology, 10, 514-526. https://doi.org/10.1038/nri2802
Aoshi, T., Koyama, S., Kobiyama, K., Akira, S. and Ishii, K.J. (2011) Innate and Adaptive Immune Responses to Viral Infection and Vaccination. Current Opinion in Virology, 1, 226-232. https://doi.org/10.1016/j.coviro.2011.07.002
Aristizábal, B. and González, Á. (2013) Innate Immune System. In: Anaya, J.M., Shoenfeld, Y., Rojas-Villarraga, A., et al., Eds., Autoimmunity: From Bench to Bedside [Internet], El Rosario University Press, Bogota, 31, 39.
Cruvinel Wde, M., Mesquita, D, Araújo, J.A., Catelan, T.T., De Souza, A.W., Da Silva, N.P. and Andrade, L.E. (2010) Immune System—Part I. Fundamentals of Innate Immunity with Emphasis on Molecular and Cellular Mechanisms of Inflammatory Response. RevistaBrasileira de Reumatologia, 50, 434-461. https://doi.org/10.1590/S0482-50042010000400008
Kasuga, Y., Zhu, B., Jang, K.J. and Yoo, J.S. (2021) Innate Immune Sensing of Coronavirus and Viral Evasion Strategies. Experimental & Molecular Medicine, 53, 723-736. https://doi.org/10.1038/s12276-021-00602-1
Schenten, D. and Medzhitov, R. (2011) The Control of Adaptive Immune Responses by the Innate Immune System. Advances in Immunology, 109, 87-124. https://doi.org/10.1016/B978-0-12-387664-5.00003-0
Medzhitov, R. and Janeway, C.A. (1998) Innate Immune Recognition and Control of Adaptive Immune Responses. Seminars in Immunology, 10, 351-353. https://doi.org/10.1006/smim.1998.0136
Barton, G.M. and Medzhitov, R. (2002) Control of Adaptive Immune Responses by Toll-Like Receptors. Current Opinion in Immunology, 14, 380-383. https://doi.org/10.1016/S0952-7915(02)00343-6
Clem, A.S. (2011) Fundamentals of Vaccine Immunology. Journal of Global Infectious Diseases, 3, 73-78. https://doi.org/10.4103/0974-777X.77299
Wang, B., Xi, X., Lei, X., et al. (2013) Enterovirus 71 Protease 2Apro Targets MAVS to Inhibit Anti-Viral Type Interferon Responses. PLOS Pathogens, 9, E1003231. https://doi.org/10.1371/journal.ppat.1003231
Rajsbaum, R. and Garcia-Sastre, A. (2013) Viral Evasion Mechanisms of Early Antiviral Responses Involving Regulation of Ubiquitin Pathways. Trends in Microbiology, 21, 421-429. https://doi.org/10.1016/j.tim.2013.06.006
Van Gent, M., Gram, A.M., Boer, I.G., et al. (2015) Silencing the Shutoff Protein of Epstein-Barr Virus in Productively Infected B Cells Points to (Innate) Targets for Immune Evasion. Journal of General Virology, 96, 858-865. https://doi.org/10.1099/jgv.0.000021
Lei, X., Liu, X., Ma, Y., et al. (2010) The 3C Protein of Enterovirus 71 Inhibits Retinoid Acid-Inducible Gene I-Mediated Interferon Regulatory Factor 3 Activation and Type I Interferon Responses. Journal of Virology, 84, 8051-8061. https://doi.org/10.1128/JVI.02491-09
Ding, Q., Cao, X., Lu, J., et al. (2013) Hepatitis C Virus NS4B Blocks the Interaction of STING and TBK1 to Evade Host Innate Immunity. Journal of Hepatology, 59, 52-58. https://doi.org/10.1016/j.jhep.2013.03.019
Keating, S.E., Maloney, G.M., Moran, E.M., et al. (2007) IRAK-2 Participates in Multiple Toll-Like Receptor Signaling Pathways to NFkappaB via Activation of TRAF6 Ubiquitination. Journal of Biological Chemistry, 282, 33435-33443. https://doi.org/10.1074/jbc.M705266200
Cardenas, W.B., Loo, Y.M., Gale, M., et al. (2006) Ebola Virus VP35 Protein Binds Double-Stranded RNA and Inhibits α/β Interferon Production Induced by RIG-I Signaling. Journal of Virology, 80, 5168-5178. https://doi.org/10.1128/JVI.02199-05
Lei, X., Bai, Z., Ye, F., et al. (2010) Regulation of NF-κB Inhibitor IκBα and Viral Replication by a KSHV MicroRNA. Nature Cell Biology, 12, 193-199. https://doi.org/10.1038/ncb2019
Huang, Y., Qi, Y., Ma, Y., et al. (2013) The Expression of Interleukin-32 Is Activated by Human Cytomegalovirus Infection and Down Regulated by Hcmv-MiR-UL112-1. Virology Journal, 10, Article No. 51. https://doi.org/10.1186/1743-422X-10-51
Ho, B.C., Yu, I.S., Lu, L.F., et al. (2014) Inhibition of MiR-146a Prevents Enterovirus-Induced Death by Restoring the Production of Type I Interferon. Nature Communications, 5, Article No. 3344. https://doi.org/10.1038/ncomms4344
Xu, C., He, X., Zheng, Z., et al. (2014) Downregulation of MicroRNA MiR-526a by Enterovirus Inhibits RIG-I-Dependent Innate Immune Response. Journal of Virology, 88, 11356-11368. https://doi.org/10.1128/JVI.01400-14
Lazarevic, I., Banko, A., Miljanovic, D., et al. (2019) Immune-Escape Hepatitis B Virus Mutations Associated with Viral Reactivation upon Immunosuppression. Viruses, 11, Article No. 778. https://doi.org/10.3390/v11090778
Hoffmann, M., Krüger, N., Schulz, S., et al. (2022) The Omicron Variant Is Highly Resistant against Antibody-Mediated Neutralization: Implications for Control of the COVID-19 Pandemic. Cell, 185, 447-456.E11. https://doi.org/10.1016/j.cell.2021.12.032
Bayarri-Olmos, R., Jarlhelt, I., Johnsen, L.B., et al. (2021) Functional Effects of Receptor-Binding Domain Mutations of SARS-CoV-2 B.1.351 and P.1 Variants. Frontiers in Immunology, 12, Article ID: 757197. https://doi.org/10.3389/fimmu.2021.757197
Wahid, M., Jawed, A., Mandal, R.K., et al. (2021) Variants of SARS-CoV-2, Their Effects on Infection, Transmission and Neutralization by Vaccine-Induced Antibodies. European Review for Medical and Pharmacological Sciences, 25, 5857-5864.
Yi, C.Y., Sun, X.Y., Lin, Y.X., et al. (2021) Comprehensive Mapping of Binding Hot Spots of SARS-CoV-2 RBD-Specific Neutralizing Antibodies for Tracking Immune Escape Variants. Genome Medicine, 13, Article No. 164. https://doi.org/10.1186/s13073-021-00985-w
Meganck, R.M. and Baric, R.S. (2021) Developing Therapeutic Approaches for Twenty-First-Century Emerging Infectious Viral Diseases. Nature Medicine, 27, 401-410. https://doi.org/10.1038/s41591-021-01282-0
Felsenstein, S., et al. (2020) COVID-19: Immunology and Treatment Options. Clinical Immunology, 215, Article ID: 108448. https://doi.org/10.1016/j.clim.2020.108448
Vallianou, N.G., et al. (2021) Anti-Viral Treatment for SARS-CoV-2 Infection: A Race against Time amidst the Ongoing Pandemic. Metabolism Open, 10, Article ID: 100096. https://doi.org/10.1016/j.metop.2021.100096
Urban, S., Neumann-Haefelin, C. and Lampertico, P. (2021) Hepatitis D Virus in 2021: Virology, Immunology and New Treatment Approaches for a Difficult-to-Treat Disease. Gut, 70, 1782-1794. https://doi.org/10.1136/gutjnl-2020-323888
Lee, S., et al. (2021) Virus-Induced Senescence Is a Driver and Therapeutic Target in COVID-19. Nature, 599, 283-289. https://doi.org/10.1038/s41586-021-03995-1
Medhi, R., et al. (2020) Nanoparticle-Based Strategies to Combat COVID-19. ACS Applied Nano Materials, 3, 8557-8580. https://doi.org/10.1021/acsanm.0c01978
Finlay, B.B. and McFadden, G. (2006) Anti-Immunology: Evasion of the Host Immune System by Bacterial and Viral Pathogens. Cell, 124, 767-782. https://doi.org/10.1016/j.cell.2006.01.034
Lunney, J.K., Fang, Y., Ladinig, A., Chen, N., Li, Y., Rowland, B. and Renukaradhya, G.J. (2016) Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System. Annual Review of Animal Biosciences, 4, 129-154. https://doi.org/10.1146/annurev-animal-022114-111025
Dokland, T. (2010) The Structural Biology of PRRSV. Virus Research, 154, 86-97. https://doi.org/10.1016/j.virusres.2010.07.029
Ruedas-Torres, I., Rodríguez-Gómez, I.M., Sánchez-Carvajal, J.M., Larenas-Muñoz, F., Pallarés, F.J., Carrasco, L. and Gómez-Laguna, J. (2021) The Jigsaw of PRRSV Virulence. Veterinary Microbiology, 260, Article ID: 109168. https://doi.org/10.1016/j.vetmic.2021.109168
Murtaugh, M.P., Xiao, Z. and Zuckermann, F. (2002) Immunological Responses of Swine to Porcine Reproductive and Respiratory Syndrome Virus Infection. Viral Immunology, 15, 533-547. https://doi.org/10.1089/088282402320914485
Zhou, X., Ramachandran, S., Mann, M. and Popkin, D.L. (2012) Role of Lymphocytic Choriomeningitis Virus (LCMV) in Understanding Viral Immunology: Past, Present and Future. Viruses, 4, 2650-2669. https://doi.org/10.3390/v4112650
Maes, P., Clement, J., Gavrilovskaya, I. and Van Ranst, M. (2004) Hantaviruses: Immunology, Treatment, and Prevention. Viral Immunology, 17, 481-497. https://doi.org/10.1089/vim.2004.17.481
Rahe, M.C. and Murtaugh, M.P. (2017) Effector Mechanisms of Humoral Immunity to Porcine Reproductive and Respiratory Syndrome Virus. Veterinary Immunology and Immunopathology, 186, 15-18. https://doi.org/10.1016/j.vetimm.2017.02.002
Reid, T., Galanis, E., Abbruzzese, J., Sze, D., Wein, L.M., Andrews, J., Randlev, B., Heise, C., Uprichard, M., Hatfield, M., Rome, L., Rubin, J. and Kirn, D. (2002) Hepatic Arterial Infusion of a Replication-Selective Oncolytic Adenovirus (Dl1520): Phase II Viral, Immunologic, and Clinical Endpoints. Cancer Research, 62, 6070-6079.
Sreepadmanabh, M., Sahu, A.K. and Chande, A. (2020) COVID-19: Advances in Diagnostic Tools, Treatment Strategies, and Vaccine Development. Journal of Biosciences, 45, Article No. 148. https://doi.org/10.1007/s12038-020-00114-6
Jayawardena, R., Sooriyaarachchi, P., Chourdakis, M., Jeewandara, C. and Ranasinghe, P. (2020) Enhancing Immunity in Viral Infections, with Special Emphasis on COVID-19: A Review. Diabetology Metabolic Syndrome, 14, 367-382. https://doi.org/10.1016/j.dsx.2020.04.015
Primorac, D., Vrdoljak, K., Brlek, P., Pavelić, E., Molnar, V., Matišić, V., Erceg Ivkošić, I. and Parčina, M. (2022) Adaptive Immune Responses and Immunity to SARS-CoV-2. Frontiers in Immunology, 13, Article ID: 848582. https://doi.org/10.3389/fimmu.2022.848582
Jeyanathan, M., Afkhami, S., Kang, A. and Xing, Z. (2023) Viral-Vectored Respiratory Mucosal Vaccine Strategies. Current Opinion in Immunology, 84, Article ID: 102370. https://doi.org/10.1016/j.coi.2023.102370