本研究提出了一种高值化利用深度处理后含有重金属的水葫芦的方法。即利用TEMPO-超声偶联法从水葫芦的茎中提取纳米纤维素晶体(CNC)和纳米纤维素(CNF)。这种方法通过将TEMPO介导氧化和超声相结合,温和地分解了水葫芦纤维束,促使纤维素纤维分解成更小的片段,从而提高了CNC和CNF的产率。研究结果表明,TEMPO超声联合法制备的CNC产率为63%,其羧基含量为1.27 mmol/g,CNF的产率为31%,羧基含量为1.21 mmol/g。扫描电子显微镜(SEM)和傅立叶红外变换(FTIR),分析证实了非纤维素杂质的逐步去除。CNC的平均长度为214.4 nm,平均直径为2.72 nm,长径比约为78.8,而CNF的平均长度为437.8 nm,平均直径为5.7 nm,长径比为76.8。较高的长径比意味着CNC和CNF具有更出色的力学性能。X射线衍射(XRD)分析显示,制备的CNC和CNF的结晶度分别为87.1%和81.2%,这表明它们具有较高的刚性。通过热重分析(TGA),还测定了纤维的热稳定性。这些结果表明,CNC和CNF在增强聚合物基体材料方面具有巨大的潜力。这一研究方法为深度处理后水葫芦实现高值化利用提供了可行性和潜力。 This study proposes a method for high-value utilization of water hyacinth containing heavy metals after deep treatment. That is, the TEMPO-ultrasonic coupling method was used to extract nanocellulose crystals (CNC) and nanocellulose (CNF) from the stems of water hyacinth. This method gently decomposes water hyacinth fiber bundles by combining TEMPO-mediated oxidation and ultrasound, promoting the decomposition of cellulose fibers into smaller fragments, thereby improving the yield of CNC and CNF. Research results show that the yield of CNC prepared by TEMPO ultrasound combined method is 63%, and its carboxyl content is 1.27 mmol/g. The yield of CNF is 31%, and its carboxyl content is 1.21 mmol/g. Scanning electron microscopy (SEM) and Fourier transform infrared transform (FTIR) analysis confirmed the progressive removal of non-cellulosic impurities. The average length of CNC is 214.4 nm, the average diameter is 2.72 nm, and the aspect ratio is about 78.8, while the average length of CNF is 437.8 nm, the average diameter is 5.7 nm, and the aspect ratio is 76.8. A higher aspect ratio means that CNC and CNF have better mechanical properties. X-ray diffraction (XRD) analysis shows that the crystallinity of the prepared CNC and CNF is 87.1% and 81.2%, respectively, which indicates that they have high rigidity. The thermal stability of the fibers was also determined by thermogravimetric analysis (TGA). These results demonstrate that CNCs and CNFs have great potential in reinforcing polymer matrix materials. This research method provides feasibility and potential for high-value utilization of water hyacinth after deep treatment.
TEMPO超声偶联,水葫芦的高值化利用,高效化提取, TEMPO Ultrasonic Coupling
High-Value Utilization of Water Hyacinth
Efficient Extraction
摘要
High-Value Utilization of Water Hyacinth: Efficient Extraction of Nanofibrillated Cellulose and Nanofiber Crystals through TEMPO-Ultrasound Coupling Method
School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai
Received: Apr. 9th, 2024; accepted: May 8th, 2024; published: May 28th, 2024
ABSTRACT
This study proposes a method for high-value utilization of water hyacinth containing heavy metals after deep treatment. That is, the TEMPO-ultrasonic coupling method was used to extract nanocellulose crystals (CNC) and nanocellulose (CNF) from the stems of water hyacinth. This method gently decomposes water hyacinth fiber bundles by combining TEMPO-mediated oxidation and ultrasound, promoting the decomposition of cellulose fibers into smaller fragments, thereby improving the yield of CNC and CNF. Research results show that the yield of CNC prepared by TEMPO ultrasound combined method is 63%, and its carboxyl content is 1.27 mmol/g. The yield of CNF is 31%, and its carboxyl content is 1.21 mmol/g. Scanning electron microscopy (SEM) and Fourier transform infrared transform (FTIR) analysis confirmed the progressive removal of non-cellulosic impurities. The average length of CNC is 214.4 nm, the average diameter is 2.72 nm, and the aspect ratio is about 78.8, while the average length of CNF is 437.8 nm, the average diameter is 5.7 nm, and the aspect ratio is 76.8. A higher aspect ratio means that CNC and CNF have better mechanical properties. X-ray diffraction (XRD) analysis shows that the crystallinity of the prepared CNC and CNF is 87.1% and 81.2%, respectively, which indicates that they have high rigidity. The thermal stability of the fibers was also determined by thermogravimetric analysis (TGA). These results demonstrate that CNCs and CNFs have great potential in reinforcing polymer matrix materials. This research method provides feasibility and potential for high-value utilization of water hyacinth after deep treatment.
Keywords:TEMPO Ultrasonic Coupling, High-Value Utilization of Water Hyacinth, Efficient Extraction
首先,将经预处理的1 g WHF-B、0.016 g TEMPO、0.16 g NaBr和15 mL NaClO混合于500 mL烧杯中,在25℃下搅拌反应8 h,加入0.5 M的NaOH溶液以保持pH = 10。反应结束后,向烧杯中加入15 mL乙醇以停止氧化反应。接下来,为去除多余的酸、无机盐和TEMPO等杂质,使用离心分离机在10000 rpm/min下进行离心分离15 min,重复3次,以将固体沉淀物分离出来。随后进行超声处理,持续90 min,以将其重新分散在水中。使用离心分离机在3500 rpm/min下对超声后的部分进行离心操作,持续30 min,使上清液中的CNC与底部的CNF分离。最后,对样品进行冷冻干燥处理。
张天韵,徐昕楠,张思婷,谢欣玥,陈颖茹,王润锴. 水葫芦的高价值利用:TEMPO-超声耦合法高效提取纳米纤维素和纳米纤维晶High-Value Utilization of Water Hyacinth: Efficient Extraction of Nanofibrillated Cellulose and Nanofiber Crystals through TEMPO-Ultrasound Coupling Method[J]. 世界生态学, 2024, 13(02): 262-273. https://doi.org/10.12677/ije.2024.132035
参考文献References
John, M., Häkkinen, A. and Louhi-Kultanen, M. (2020) Purification Efficiency of Natural Freeze Crystallization for Urban Wastewaters. Cold Regions Science and Technology,170, Article 102953. https://doi.org/10.1016/j.coldregions.2019.102953
Li, F., He, X., Srishti, A., Song, S., Tan, H.T.W., Sweeney, D.J. and Wang, C.-H. (2021) Water Hyacinth for Energy and Environmental Applications: A Review. Bioresource Technology,327, Article 124809. https://doi.org/10.1016/j.biortech.2021.124809
Wang, X., Shi, L., Lan, C.Q., Delatolla, R. and Zhang, Z. (2013) Potential of Water Hyacinth for Phytoremediation in Low Temperature Environment. Environmental Progress & Sustainable Energy,32, 976-981. https://doi.org/10.1002/ep.11853
Qin, H., Diao, M., Zhang, Z., Visser, P.M., Zhang, Y., Wang, Y. and Yan, S. (2020) Responses of Phytoremediation in Urban Wastewater with Water Hyacinths to Extreme Precipitation. Journal of Environmental Management,271, Article 110948. https://doi.org/10.1016/j.jenvman.2020.110948
Singh, J., Kumar, P., Eid, E.M., Taher, M.A., El-Morsy, M.H.E., Osman, H.E.M. and Kumar, V. (2023) Phytoremediation of Nitrogen and Phosphorus Pollutants from Glass Industry Effluent by Using Water Hyacinth (Eichhornia crassipes (Mart.) Solms): Application of RSM and ANN Techniques for Experimental Optimization. Environmental Science and Pollution Research,30, 20590-20600. https://doi.org/10.1007/s11356-022-23601-9
Amalina, F., Razak, A.S.A., Krishnan, S., Zularisam, A.W. and Nasrullah, M. (2022) Water Hyacinth (Eichhornia crassipes) for Organic Contaminants Removal in Water—A Review. Journal of Hazardous Materials Advances,7, Article 100092. https://doi.org/10.1016/j.hazadv.2022.100092
Madikizela, L.M. (2021) Removal of Organic Pollutants in Water Using Water Hyacinth (Eichhornia crassipes). Journal of Environmental Management,295, Article 113153. https://doi.org/10.1016/j.jenvman.2021.113153
Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S.E., Md Din, M.F., Taib, S.M., Sairan, F.M. (2015) Perspectives of Phytoremediation Using Water Hyacinth for Removal of Heavy Metals, Organic and Inorganic Pollutants in Wastewater. Journal of Environmental Management,163, 125-133. https://doi.org/10.1016/j.jenvman.2015.08.018
Tirva, D., Tiwari, D., Chalotra, A. and Rawat, M. (2022) Bio Ethanol Production from Water Hyacinth. Materials Today: Proceedings, In Press. https://doi.org/10.1016/j.matpr.2022.11.054
Zhu, Q., Gao, D., Yan, D., Tang, J., Cheng, X., El Sayed, I.E.T. and Xin, J. (2023) Highly Efficient One-Pot Bioethanol Production from Corn Stalk with Biocompatible Ionic Liquids. Bioresource Technology Reports,22, Article 101461. https://doi.org/10.1016/j.biteb.2023.101461
Abdel-Fattah, A.F. and Abdel-Naby, M.A. (2012) Pretreatment and Enzymic Saccharification of Water Hyacinth Cellulose. Carbohydrate Polymers,87, 2109-2113. https://doi.org/10.1016/j.carbpol.2011.10.033
Ajithram, A., Winowlin Jappes, J.T., Chithra, G.K. and Daphne, R. (2023) Serious Environmental Threat Water Hyacinth (Eichhornia crassipes) Plant Natural Fibress: Different Extraction Methods and Morphological Properties for Polymer Composite Applications. Materials Today: Proceedings, In Press. https://doi.org/10.1016/j.matpr.2023.03.431
Cantero, D.A., Bermejo, M.D. and Cocero, M.J. (2015) Governing Chemistry of Cellulose Hydrolysis in Supercritical Water. ChemSusChem,8, 1026-1033. https://doi.org/10.1002/cssc.201403385
Seta, F.T., An, X., Liu, L., Zhang, H., Yang, J., Zhang, W. and Liu, H. (2020) Preparation and Characterization of High Yield Cellulose Nanocrystals (CNC) Derived from Ball Mill Pretreatment and Maleic Acid Hydrolysis. Carbohydrate Polymers,234, Article 115942. https://doi.org/10.1016/j.carbpol.2020.115942
Boruah, P., Gupta, R. and Katiyar, V. (2023) Fabrication of Cellulose Nanocrystal (CNC) from Waste Paper for Developing Antifouling and High-Performance Polyvinylidene Fluoride (PVDF) Membrane for Water Purification. Carbohydrate Polymer Technologies and Applications,5, Article 100309. https://doi.org/10.1016/j.carpta.2023.100309
Xi, C., Wang, R., Rao, P., Zhang, W., Yan, L., Li, G. and Zhou, X. (2020) The Fabrication and Arsenic Removal Performance of Cellulose Nanocrystal-Containing Absorbents Based on the “Bridge Joint” Effect of Iron Ions. Carbohydrate Polymers,237, Article 116129. https://doi.org/10.1016/j.carbpol.2020.116129
Fan, J., Xu, M., Xu, Y.-T., Hamad, W.Y., Meng, Z. and MacLachlan, M.J. (2023) A Visible Multi-Response Electrochemical Sensor Based on Cellulose Nanocrystals. Chemical Engineering Journal,457, Article 141175. https://doi.org/10.1016/j.cej.2022.141175
Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D. and Dorris, A. (2011) Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition,50, 5438-5466. https://doi.org/10.1002/anie.201001273
Li, Z., Guan, J., Yan, C., Chen, N., Wang, C., Liu, T. and Shao, Z. (2023) Corn Straw Core/Cellulose Nanofibers Composite for Food Packaging: Improved Mechanical, Bacteria Blocking, Ultraviolet and Water Vapor Barrier Properties. Food Hydrocolloids,143, Article 108884. https://doi.org/10.1016/j.foodhyd.2023.108884
Costa, A.L.R., Gomes, A., Furtado, G.D.F., Tibolla, H., Menegalli, F.C. and Cunha, R.L. (2020) Modulating in vitro Digestibility of Pickering Emulsions Stabilized by Food-Grade Polysaccharides Particles. Carbohydrate Polymers,227, Article 115344. https://doi.org/10.1016/j.carbpol.2019.115344
Babaei-Ghazvini, A. and Acharya, B. (2023) Crosslinked Poly (Vinyl Alcohol) Composite Reinforced with Tunicate, Wood, and Hybrid Cellulose Nanocrystals: Comparative Physicochemical, Thermal, and Mechanical Properties. International Journal of Biological Macromolecules,227, 1048-1058. https://doi.org/10.1016/j.ijbiomac.2022.11.281
Babaei-Ghazvini, A., Cudmore, B., Dunlop, M.J., Acharya, B., Bissessur, R., Ahmed, M. and Whelan, W.M. (2020) Effect of Magnetic Field Alignment of Cellulose Nanocrystals in Starch Nanocomposites: Physicochemical and Mechanical Properties. Carbohydrate Polymers,247, Article 116688. https://doi.org/10.1016/j.carbpol.2020.116688
Meng, F., Wang, G., Du, X., Wang, Z., Xu, S. and Zhang, Y. (2019) Extraction and Characterization of Cellulose Nanofibers and Nanocrystals from Liquefied Banana Pseudo-Stem Residue. Composites Part B: Engineering,160, 341-347. https://doi.org/10.1016/j.compositesb.2018.08.048
Wei, L., Rui, W. and Shouxin, L. (2011) Nanocrystalline Cellulose Prepared from Softwood Kraft Pulp via Ultrasonic-Assisted Acid Hydrolysis. BioResources,6, 4271-4281. https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=69914688&lang=pt-br&site=ehost-live https://doi.org/10.15376/biores.6.4.4271-4281
Xiao, S., Gao, R., Lu, Y., Li, J. and Sun, Q. (2015) Fabrication and Characterization of Nanofibrillated Cellulose and Its Aerogels from Natural Pine Needles. Carbohydrate Polymers,119, 202-209. https://doi.org/10.1016/j.carbpol.2014.11.041
Noremylia, M.B., Hassan, M.Z. and Ismail, Z. (2022) Recent Advancement in Isolation, Processing, Characterization and Applications of Emerging Nanocellulose: A Review. International Journal of Biological Macromolecules,206, 954-976. https://doi.org/10.1016/j.ijbiomac.2022.03.064
Jiang, H., Wu, S. and Zhou, J. (2023) Preparation and Modification of Nanocellulose and Its Application to Heavy Metal Adsorption: A Review. International Journal of Biological Macromolecules,236, Article 123916. https://doi.org/10.1016/j.ijbiomac.2023.123916
Indarti, E., Marwan, Rohaizu, R. and Wanrosli, W.D. (2019) Silylation of TEMPO Oxidized Nanocellulose from Oil Palm Empty Fruit Bunch by 3-Aminopropyltriethoxysilane. International Journal of Biological Macromolecules,135, 106-112. https://doi.org/10.1016/j.ijbiomac.2019.05.161
Saito, T., Kimura, S., Nishiyama, Y. and Isogai, A. (2007) Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules,8, 2485-2491. https://doi.org/10.1021/bm0703970
Hoo, D.Y., Low, Z.L., Low, D.Y.S., Tang, S.Y., Manickam, S., Tan, K.W. and Ban, Z.H. (2022) Ultrasonic Cavitation: An Effective Cleaner and Greener Intensification Technology in the Extraction and Surface Modification of Nanocellulose. Ultrasonics Sonochemistry,90, Article 106176. https://doi.org/10.1016/j.ultsonch.2022.106176
Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A. and Johnson, D.K. (2010) Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance.3, Article No. 10. https://doi.org/10.1186/1754-6834-3-10
Pakutsah, K. and Aht-Ong, D. (2020) Facile Isolation of Cellulose Nanofibers from Water Hyacinth Using Water-Based Mechanical Defibrillation: Insights into Morphological, Physical, and Rheological Properties. International Journal of Biological Macromolecules,145, 64-76. https://doi.org/10.1016/j.ijbiomac.2019.12.172
Tanpichai, S., Biswas, S.K., Witayakran, S. and Yano, H. (2019) Water Hyacinth: A Sustainable Lignin-Poor Cellulose Source for the Production of Cellulose Nanofibers. ACS Sustainable Chemistry & Engineering,7, 18884-18893. https://doi.org/10.1021/acssuschemeng.9b04095
Ovalle-Serrano, S.A., Gómez, F.N., Blanco-Tirado, C. and Combariza, M.Y. (2018) Isolation and Characterization of Cellulose Nanofibrils from Colombian Fique decortication by-Products. Carbohydrate Polymers,189, 169-177. https://doi.org/10.1016/j.carbpol.2018.02.031
An, X., Wen, Y., Cheng, D., Zhu, X. and Ni, Y. (2016) Preparation of Cellulose Nano-Crystals through a Sequential Process of Cellulase Pretreatment and Acid Hydrolysis. Cellulose,23, 2409-2420. https://doi.org/10.1007/s10570-016-0964-4
Phanthong, P., Guan, G., Ma, Y., Hao, X. and Abudula, A. (2016) Effect of Ball Milling on the Production of Nanocellulose Using Mild Acid Hydrolysis Method. Journal of the Taiwan Institute of Chemical Engineers,60, 617-622. https://doi.org/10.1016/j.jtice.2015.11.001
Rohaizu, R. and Wanrosli, W.D. (2017) Sono-Assisted TEMPO Oxidation of Oil Palm Lignocellulosic Biomass for Isolation of Nanocrystalline Cellulose. Ultrasonics Sonochemistry,34, 631-639. https://doi.org/10.1016/j.ultsonch.2016.06.040
Kouadri, I. and Satha, H. (2018) Extraction and Characterization of Cellulose and Cellulose Nanofibers from Citrullus Colocynthis Seeds. Industrial Crops and Products,124, 787-796. https://doi.org/10.1016/j.indcrop.2018.08.051
Cheng, Q., Wang, S., Rials, T.G. and Lee, S.-H. (2007) Physical and Mechanical Properties of Polyvinyl Alcohol and Polypropylene Composite Materials Reinforced with Fibril Aggregates Isolated from Regenerated Cellulose Fibers. Cellulose,14, 593-602. https://doi.org/10.1007/s10570-007-9141-0
Bhatnagar, A. and Sain, M. (2005) Processing of Cellulose Nanofiber-Reinforced Composites. Journal of Reinforced Plastics and Composites,24, 1259-1268. https://doi.org/10.1177/0731684405049864
Fukuzumi, H., Saito, T., Okita, Y. and Isogai, A. (2010) Thermal Stabilization of TEMPO-Oxidized Cellulose. Polymer Degradation and Stability,95, 1502-1508. https://doi.org/10.1016/j.polymdegradstab.2010.06.015
Shen, D.K. and Gu, S. (2010) Corrigendum to “The Mechanism for Thermal Decomposition of Cellulose and Its Main Products” [Biores. Technol. 100 (2009) 6496–6504]. Bioresource Technology,101, 6879. https://doi.org/10.1016/j.biortech.2010.04.002
Cao, X., Ding, B., Yu, J. and Al-Deyab, S.S. (2012) Cellulose Nanowhiskers Extracted from TEMPO-Oxidized Jute Fibers. Carbohydrate Polymers,90, 1075-1080. https://doi.org/10.1016/j.carbpol.2012.06.046
Zhang, Y., Zhang, Y., Xu, W., Wu, H., Shao, Y., Han, X. And Li, Z. (2023) Preparation Methods of Cellulose Nanocrystal and Its Application in Treatment of Environmental Pollution: A Mini-Review. Colloid and Interface Science Communications,53, Article 100707. https://doi.org/10.1016/j.colcom.2023.100707