References
Monteiro De Oliveira, E.C., Caixeta, E.S., Santos, V.S.V., et al. (2021) Arsenic Exposure from Groundwater: Environmental Contamination, Human Health Effects, and Sustainable Solutions. Journal of Toxicology and Environmental Health, Part B, 24, 119-135. >https://doi.org/10.1080/10937404.2021.1898504
Calatayud, M. and Laparra Llopis, J.M. (2015) Arsenic through the Gastrointestinal Tract. In: Flora, S.J.S., Ed., Handbook of Arsenic Toxicology, Academic Press, Cambridge, MA, 281-299.>https://doi.org/10.1016/B978-0-12-418688-0.00010-1
Ayotte, J.D., Medalie, L., Qi, S.L., Backer, L.C. and Nolan, B.T. (2017) Estimating the High-Arsenic Domestic-Well Population in the Conterminous United States. Environmental Science&Technology, 51, 12443-12454.>https://doi.org/10.1021/acs.est.7b02881
Concha, G., Nermell, B. and Vahter, M.V. (1998) Metabolism of Inorganic Arsenic in Children with Chronic High Arsenic Exposure in Northern Argentina. Environmental Health Perspectives, 106, 355-359.>https://doi.org/10.2307/3434042
赵引玲. 砷中毒的机理及治疗[J]. 陕西中医学院学报, 2002, 25(4): 60.
Antfolk, M. and Jensen, K.B. (2020) A Bioengineering Perspective on Modelling the Intestinal Epithelial Physiology in vitro. Nature Communications, 11, Article No. 6244. >https://doi.org/10.1038/s41467-020-20052-z
Ratnaike, R.N. (2003) Acute and Chronic Arsenic Toxicity. Postgraduate Medical Journal, 79, 391-396.>https://doi.org/10.1136/pmj.79.933.391
Backhed, F., Ley, R.E., Sonnenburg, J.L., et al. (2005) Host-Bacterial Mutualism in the Human Intestine. Science, 307, 1915-1920. >https://doi.org/10.1126/science.1104816
Qin, J., Li, R., Raes, J., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65. >https://doi.org/10.1038/nature08821
Bjorklund, G., Skalny, A.V., Rahman, M.M., et al. (2018) Toxic Metal(Loid)-Based Pollutants and Their Possible Role in Autism Spectrum Disorder. Environmental Research, 166, 234-250. >https://doi.org/10.1016/j.envres.2018.05.020
Bradberry, S. and Vale, A. (2009) A Comparison of Sodium Calcium Edetate (Edetate Calcium Disodium) and Succimer (DMSA) in the Treatment of Inorganic Lead Poisoning. Clinical Toxicology, 47, 841-858.>https://doi.org/10.3109/15563650903321064
Glenn, J.D. and Mowry, E.M. (2016) Emerging Concepts on the Gut Microbiome and Multiple Sclerosis. Journal of Interferon&Cytokine Research, 36, 347-357. >https://doi.org/10.1089/jir.2015.0177
Sweeney, T.E. and Morton, J.M. (2013) The Human Gut Microbiome: A Review of the Effect of Obesity and Surgically Induced Weight Loss. JAMA Surgery, 148, 563-569. >https://doi.org/10.1001/jamasurg.2013.5
Vandeputte, D. (2020) Personalized Nutrition through the Gut Microbiota: Current Insights and Future Perspectives. Nutrition Reviews, 78, 66-74. >https://doi.org/10.1093/nutrit/nuaa098
O’Hara, A.M. and Shanahan, F. (2006) The Gut Flora as a Forgotten Organ. EMBO Reports, 7, 688-693.>https://doi.org/10.1038/sj.embor.7400731
Coryell, M., Mcalpine, M., Pinkham, N.V., et al. (2018) The Gut Microbiome Is Required for Full Protection against Acute Arsenic Toxicity in Mouse Models. Nature Communications, 9, Article No. 5424.>https://doi.org/10.1038/s41467-018-07803-9
Falk, P.G., Hooper, L.V., Midtvedt, T. and Gordon, J.I. (1998) Creating and Maintaining the Gastrointestinal Ecosystem: What We Know and Need to Know from Gnotobiology. Microbiology and Molecular Biology Reviews, 62, 1157-1170. >https://doi.org/10.1128/MMBR.62.4.1157-1170.1998
Round, J.L. and Mazmanian, S.K. (2009) The Gut Microbiota Shapes Intestinal Immune Responses during Health and Disease. Nature Reviews Immunology, 9, 313-323. >https://doi.org/10.1038/nri2515
Wu, J., Zhao, Y., Wang, X., et al. (2022) Dietary Nutrients Shape Gut Microbes and Intestinal Mucosa via Epigenetic Modifications. Critical Reviews in Food Science and Nutrition, 62, 783-797.>https://doi.org/10.1080/10408398.2020.1828813
Zhang, J., Zhu, S., Ma, N., et al. (2021) Metabolites of Microbiota Response to Tryptophan and Intestinal Mucosal Immunity: A Therapeutic Target to Control Intestinal Inflammation. Medicinal Research Reviews, 41, 1061-1088.>https://doi.org/10.1002/med.21752
Sanders, M.E., Merenstein, D.J., Reid, G., et al. (2019) Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nature Reviews Gastroenterology&Hepatology, 16, 605-616.>https://doi.org/10.1038/s41575-019-0173-3
Yu, Y., Sitaraman, S. and Gewirtz, A.T. (2004) Intestinal Epithelial Cell Regulation of Mucosal Inflammation. Immunologic Research, 29, 55-67. >https://doi.org/10.1385/IR:29:1-3:055
Kuhn, K.A., Pedraza, I. and Demoruelle, M.K. (2014) Mucosal Immune Responses to Microbiota in the Development of Autoimmune Disease. Rheumatic Disease Clinics, 40, 711-725. >https://doi.org/10.1016/j.rdc.2014.07.013
Sassone-Corsi, M., Nuccio, S.-P., Liu, H., et al. (2016) Microcins Mediate Competition among Enterobacteriaceae in the Inflamed Gut. Nature, 540, 280-283. >https://doi.org/10.1038/nature20557
Chi, L., Bian, X., Gao, B., Tu, P., et al. (2017) The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome. Toxicological Sciences, 160, 193-204.>https://doi.org/10.1093/toxsci/kfx174
Griggs, J.L., Chi, L., Hanley, N.M., et al. (2022) Bioaccessibility of Arsenic from Contaminated Soils and Alteration of the Gut Microbiome in an in vitro Gastrointestinal Model. Environmental Pollution, 309, Article 119753.>https://doi.org/10.1016/j.envpol.2022.119753
Hoen, A.G., Madan, J.C., Li, Z., et al. (2018) Sex-Specific Associations of Infants’ Gut Microbiome with Arsenic Exposure in a US Population. Scientific Reports, 8, Article No. 12627. >https://doi.org/10.1038/s41598-018-30581-9
Madan, J.C., Farzan, S.F., Hibberd, P.L., et al. (2012) Normal Neonatal Microbiome Variation in Relation to Environmental Factors, Infection and Allergy. Current Opinion in Pediatrics, 24, 753-759.>https://doi.org/10.1097/MOP.0b013e32835a1ac8
Laue, H.E., Moroishi, Y., Jackson, B.P., et al. (2020) Nutrient-Toxic Element Mixtures and the Early Postnatal Gut Microbiome in a United States Longitudinal Birth Cohort. Environment International, 138, Article 105613.>https://doi.org/10.1016/j.envint.2020.105613
Karagas, M.R., McRitchie, S., Hoen, A.G., et al. (2023) Alterations in Microbial-Associated Fecal Metabolites in Relation to Arsenic Exposure among Infants. Exposure and Health, 14, 941-949.>https://doi.org/10.1007/s12403-022-00468-2
Domene, A., Orozco, H., Rodríguez-Viso, P., et al. (2023) Impact of Chronic Exposure to Arsenate through Drinking Water on the Intestinal Barrier. Chemical Research in Toxicology, 36, 1731-1744.
Li, D., Yang, Y., Li, Y., et al. (2021) Changes Induced by Chronic Exposure to High Arsenic Concentrations in the Intestine and Its Microenvironment. Toxicology, 456, Article 152767. >https://doi.org/10.1016/j.tox.2021.152767
Ye, Z., Huang, L., Zhang, J., et al. (2022) Biodegradation of Arsenobetaine to Inorganic Arsenic Regulated by Specific Microorganisms and Metabolites in Mice. Toxicology, 475, Article 153238. >https://doi.org/10.1016/j.tox.2022.153238
Singh, D.P., Yadav, S.K., Patel, K., et al. (2022) Short-Term Trivalent Arsenic and Hexavalent Chromium Exposures Induce Gut Dysbiosis and Transcriptional Alteration in Adipose Tissue of Mice. Molecular Biology Reports, 50, 1033-1044. >https://doi.org/10.1007/s11033-022-07992-z
Deng, Z., Yin, X., Zhang, S., et al. (2023) Study on Arsenic Speciation, Bioaccessibility, and Gut Microbiota in Realgar-Containing Medicines by DGT Technique and Artificial Gastrointestinal Extraction (PBET) Combine with Simulated Human Intestinal Microbial Ecosystem (SHIME). Journal of Hazardous Materials, 463, Article 132863.>https://doi.org/10.1016/j.jhazmat.2023.132863
Yang, Y., Chi, L., Liu, C.-W., et al. (2023) Chronic Arsenic Exposure Perturbs Gut Microbiota and Bile Acid Homeostasis in Mice. Chemical Research in Toxicology, 36, 1037-1043.>https://doi.org/10.1021/acs.chemrestox.2c00410
Wu, H., Wu, R., Chen, X., Ceng, H., et al. (2022) Developmental Arsenic Exposure Induces Dysbiosis of Gut Microbiota and Disruption of Plasma Metabolites in Mice. Toxicology and Applied Pharmacology, 450, Article 116174.>https://doi.org/10.1016/j.taap.2022.116174
Zhong, G., Wan, F., Lan, J., et al. (2021) Arsenic Exposure Induces Intestinal Barrier Damage and Consequent Activation of Gut-Liver Axis Leading to Inflammation and Pyroptosis of Liver in Ducks. Science of the Total Environment, 788, Article 147780. >https://doi.org/10.1016/j.scitotenv.2021.147780
Tandon, N., Roy, M., Roy, S., et al. (2012) Protective Effect of Psidium Guajava in Arsenic-Induced Oxidative Stress and Cytological Damage in Rats. Toxicology International, 19, 245-249. >https://doi.org/10.4103/0971-6580.103658
Gupta, D.K., Inouhe, M., Rodriguez-Serrano, M., et al. (2013) Oxidative Stress and Arsenic Toxicity: Role of NADPH Oxidases. Chemosphere, 90, 1987-1996. >https://doi.org/10.1016/j.chemosphere.2012.10.066
Wang, J., Hu, W., Yang, H., et al. (2020) Arsenic Concentrations, Diversity and Co-Occurrence Patterns of Bacterial and Fungal Communities in the Feces of Mice under Sub-Chronic Arsenic Exposure through Food. Environment International, 138, Article 105600. >https://doi.org/10.1016/j.envint.2020.105600
Wang, H.-T., Ma, L., Zhu, D., et al. (2021) Responses of Earthworm Metaphire vulgaris Gut Microbiota to Arsenic and Nanoplastics Contamination. Science of the Total Environment, 806, Article 150279.>https://doi.org/10.1016/j.scitotenv.2021.150279
Song, D., Chen, L., Zhu, S., et al. (2022) Gut Microbiota Promote Biotransformation and Bioaccumulation of Arsenic in Tilapia. Environmental Pollution, 305, Article 119321. >https://doi.org/10.1016/j.envpol.2022.119321
Kaur, R. and Rawal, R. (2023) Influence of Heavy Metal Exposure on Gut Microbiota: Recent Advances. Journal of Biochemical and Molecular, 37, e23485. >https://doi.org/10.1002/jbt.23485
Mirza Alizadeh, A., Hosseini, H., Mollakhalili Meybodi, N., et al. (2022) Mitigation of Potentially Toxic Elements in Food Products by Probiotic Bacteria: A Comprehensive Review. Food Research International, 152, Article 110324.>https://doi.org/10.1016/j.foodres.2021.110324
Van de Wiele, T., Gallawa, C.M., Kubachka, K.M., et al. (2010) Arsenic Metabolism by Human Gut Microbiota upon in vitro Digestion of Contaminated Soils. Environmental Health Perspectives, 118, 1004-1009.>https://doi.org/10.1289/ehp.0901794
Sun, G.-X., Van de Wiele, T., Alava, P., et al. (2012) Arsenic in Cooked Rice: Effect of Chemical, Enzymatic and Microbial Processes on Bioaccessibility and Speciation in the Human Gastrointestinal Tract. Environmental Pollution, 162, 241-246. >https://doi.org/10.1016/j.envpol.2011.11.021
Du, X., Zhang, J., Zhang, X., et al. (2021) Persistence and Reversibility of Arsenic-Induced Gut Microbiome and Metabolome Shifts in Male Rats after 30-Days Recovery Duration. Science of the Total Environment, 776, Article 145972.>https://doi.org/10.1016/j.scitotenv.2021.145972
Zhao, Q., Hao, Y., Yang, X., et al. (2023) Mitigation of Maternal Fecal Microbiota Transplantation on Neurobehavioral Deficits of Offspring Rats Prenatally Exposed to Arsenic: Role of Microbiota-Gut-Brain Axis. Journal of Hazardous Materials, 457, Article 131816. >https://doi.org/10.1016/j.jhazmat.2023.131816
Liu, X., Wang, J., Deng, H., et al. (2022) In situ Analysis of Variations of Arsenicals, Microbiome and Transcriptome Profiles along Murine Intestinal Tract. Journal of Hazardous Materials, 427, Article 127899.>https://doi.org/10.1016/j.jhazmat.2021.127899
Fu, Y., Yin, N., Cai, X., et al. (2021) Arsenic Speciation and Bioaccessibility in Raw and Cooked Seafood: Influence of Seafood Species and Gut Microbiota. Environmental Pollution, 280, Article 116958.>https://doi.org/10.1016/j.envpol.2021.116958
Bolan, S., Seshadri, B., Keely, S., et al. (2021) Bioavailability of Arsenic, Cadmium, Lead and Mercury as Measured by Intestinal Permeability. Scientific Reports, 11, Article No. 14675. >https://doi.org/10.1038/s41598-021-94174-9
Shao, J., Lai, C., Zheng, Q., et al. (2024) Effects of Dietary Arsenic Exposure on Liver Metabolism in Mice. Ecotoxicology and Environmental Safety, 274, Article 116147. >https://doi.org/10.1016/j.ecoenv.2024.116147
McDermott, T.R., Stolz, J.F. and Oremland, R.S. (2019) Arsenic and the Gastrointestinal Tract Microbiome. Environmental Microbiology Reports, 12, 136-159. >https://doi.org/10.1111/1758-2229.12814
Ghosh, S., Banerjee, M., Haribabu, B. and Jala, V.R. (2022) Urolithin a Attenuates Arsenic-Induced Gut Barrier Dysfunction. Archives of Toxicology, 96, 987-1007. >https://doi.org/10.1007/s00204-022-03232-2
Li, M.-Y., Chen, X.-Q., Wang, J.-Y., et al. (2021) Antibiotic Exposure Decreases Soil Arsenic Oral Bioavailability in Mice by Disrupting Ileal Microbiota and Metabolic Profile. Environment International, 151, Article 106444.>https://doi.org/10.1016/j.envint.2021.106444
Xu, W., Zhang, S., Jiang, W., et al. (2020) Arsenic Accumulation of Realgar Altered by Disruption of Gut Microbiota in Mice. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 8380473.>https://doi.org/10.1155/2020/8380473
Yin, N., Cai, X., Zheng, L., et al. (2020) In vitro Assessment of Arsenic Release and Transformation from As(V)-Sorbed Goethite and Jarosite: The Influence of Human Gut Microbiota. Environmental Science&Technology, 54, 4432-4442. >https://doi.org/10.1021/acs.est.9b07235
Chi, L., Xue, J., Tu, P., et al. (2019) Gut Microbiome Disruption Altered the Biotransformation and Liver Toxicity of Arsenic in Mice. Archives of Toxicology, 93, 25-35. >https://doi.org/10.1007/s00204-018-2332-7
Bisanz, J.E., Enos, M.K., Mwanga, J.R., et al. (2014) Randomized Open-Label Pilot Study of the Influence of Probiotics and the Gut Microbiome on Toxic Metal Levels in Tanzanian Pregnant Women and School Children. mBio, 5, e01580-14. >https://doi.org/10.1128/mBio.01580-14
Zhou, G.-W., Yang, X.-R., Zheng, F., et al. (2020) Arsenic Transformation Mediated by Gut Microbiota Affects the Fecundity of Caenorhabditis elegans. Environmental Pollution, 260, Article 113991.>https://doi.org/10.1016/j.envpol.2020.113991
Yin, N., Cai, X., Wang, P., et al. (2021) Predictive Capabilities of in vitro Colon Bioaccessibility for Estimating in vivo Relative Bioavailability of Arsenic from Contaminated Soils: Arsenic Speciation and Gut Microbiota Considerations. Science of the Total Environment, 818, Article 151804. >https://doi.org/10.1016/j.scitotenv.2021.151804
Zhang, Y.-S., Juhasz, A.L., Xi, J.-F., et al. (2023) Dietary Galactooligosaccharides Supplementation as a Gut Microbiota-Regulating Approach to Lower Early Life Arsenic Exposure. Environmental Science&Technology, 57, 19463-19472. >https://doi.org/10.1021/acs.est.3c07168
Ji, Z.-H., He, S., Xie, W.-Y., et al. (2023) Agaricus blazei Polysaccharide Alleviates DSS-Induced Colitis in Mice by Modulating Intestinal Barrier and Remodeling Metabolism. Nutrients, 15, Article 4877.>https://doi.org/10.3390/nu15234877
Isokpehi, R.D., Udensi, U.K., Simmons, S.S., et al. (2014) Evaluative Profiling of Arsenic Sensing and Regulatory Systems in the Human Microbiome Project Genomes. Microbiology Insights, 7, 25-34.>https://doi.org/10.4137/MBI.S18076
Lu, K., Cable, P.H., Abo, R.P., et al. (2013) Gut Microbiome Perturbations Induced by Bacterial Infection Affect Arsenic Biotransformation. Chemical Research in Toxicology, 26, 1893-1903. >https://doi.org/10.1021/tx4002868
Wang, H.-T., Liang, Z.-Z., Ding, J., et al. (2021) Arsenic Bioaccumulation in the Soil Fauna Alters Its Gut Microbiome and Microbial Arsenic Biotransformation Capacity. Journal of Hazardous Materials, 417, Article 126018.>https://doi.org/10.1016/j.jhazmat.2021.126018
Wang, P., Du, H., Fu, Y., et al. (2022) Role of Human Gut Bacteria in Arsenic Biosorption and Biotransformation. Environment International, 165, Article 107314. >https://doi.org/10.1016/j.envint.2022.107314
Rawle, R., Saley, T.C., Kang, Y.-S., et al. (2021) Introducing the ArsR-Regulated Arsenic Stimulon. Frontiers in Microbiology, 12, Article 630562. >https://doi.org/10.3389/fmicb.2021.630562
Bajaj, J.S., Ng, S.C. and Schnabl, B. (2022) Promises of Microbiome-Based Therapies. Journal of Hepatology, 76, 1379-1391. >https://doi.org/10.1016/j.jhep.2021.12.003