外泌体是新兴的重要癌症生物标志物。有效检测外泌体和外泌体内容物,特别是microRNA (miRNA),对于癌症的诊断和治疗是迫切且具有挑战性的。基于双链特异性核酸酶(Duplex specific nuclease, DSN)的特异性识别和消化能力,我们设计了一个2’-O-甲基修饰的分子信标(2’-O-methyl-modified molecular beacon, omMB),并开发了一个高灵敏度和特异性分析外泌体miRNA的信号放大检测平台。该方法以A375细胞分泌的外泌体为模型,以microRNA-21 (miR-21)为模型miRNA分子,可以检测到低至37.9 pM的miRNA和2 μg/mL的裂解外泌体。同时,与许多已开发的DSN辅助信号放大方法相比,新方法具有较高的特异性,可以区分错配miRNA。总之,这项工作为医学分析、临床应用和疾病诊断中的外泌体检测提供了一种有效的分析策略。 Exosomes are emerging important cancer biomarkers. Effective detection of exosome and exosomal contents, especially microRNA (miRNA), is urgent and challenging for cancer diagnosis and treatment. Based on specific recognition and digestion capacity of duplex specific nuclease (DSN), we designed a 2’-O-methyl-modified molecular beacon (omMB) and proposed an amplified detection platform for highly sensitive and specific analysis of exosomal miRNA. Taking A375 cell secreted exosomes as model targets and microRNA-21 (miR-21) as model miRNA molecules, the proposed method can detect miRNA down to 37.9 pM and 2 μg/mL lysed exosomes. Meanwhile, compared with many developed DSN-assisted amplified methods, the new method has high specificity which can distinguish mismatch miRNA. Overall, this work provides an effective analytical strategy for exosome detection in medical analysis, clinic applications and disease diagnosis.
双链特异性核酸酶,外泌体,微小RNA,分子信标,信号放大, Duplex-Specific Nuclease
Exosome
MicroRNA
Molecular Beacons
Signal Amplification
摘要
2’-O-Methyl-Modified Molecular Beacons for Highly Sensitive and Specific Exosomal Tumor microRNA Analysis Based on Nuclease-Assisted Signal Amplification
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou Zhejiang
Received: Apr. 25th, 2024; accepted: May 15th, 2024; published: May 24th, 2024
ABSTRACT
Exosomes are emerging important cancer biomarkers. Effective detection of exosome and exosomal contents, especially microRNA (miRNA), is urgent and challenging for cancer diagnosis and treatment. Based on specific recognition and digestion capacity of duplex specific nuclease (DSN), we designed a 2’-O-methyl-modified molecular beacon (omMB) and proposed an amplified detection platform for highly sensitive and specific analysis of exosomal miRNA. Taking A375 cell secreted exosomes as model targets and microRNA-21 (miR-21) as model miRNA molecules, the proposed method can detect miRNA down to 37.9 pM and 2 μg/mL lysed exosomes. Meanwhile, compared with many developed DSN-assisted amplified methods, the new method has high specificity which can distinguish mismatch miRNA. Overall, this work provides an effective analytical strategy for exosome detection in medical analysis, clinic applications and disease diagnosis.
Keywords:Duplex-Specific Nuclease, Exosome, MicroRNA, Molecular Beacons, Signal Amplification
通过聚丙烯酰胺凝胶电泳(PAGE)检测DSN活性,5个Ep管中先加入10 μL DSN缓冲溶液(10 mM Tris-HCl (pH 8.0), 5 mM MgCl2and 1 mM DTT),之后在5个Ep管中分别加入4 μM omMB (管1),4 μM miR-21 (管2),4 μM omMB + 0.25 U DSN (管3),4 μM miR-21 + 0.25 U DSN (管4),4 μM omMB + 4 μM miR-21 + 0.25 U DSN (管5)。5个样品在37℃下孵育1 h后加入10 μL饱和尿素停止反应,再加入4 μL 6x上样缓冲液后,样品可用于PAGE分析。
实验制备了15%变性的PAGE,其中含有4 ml 30% Acryl/Bis溶液(29:1),1.4 ml H2O,3.3 g尿素和1.6 ml 5 × TBE。尿素溶解后,加入20 μL 10%过硫酸铵(APS)和20 μL四甲基乙二胺(TEMED)。充分混合后,在垂直平板电泳上加热30分钟后制成凝胶。之后,用Bio-Rad照射凝胶。
吕天鹏,柯声锋,王书皓,崔 亮. 基于核酸酶辅助信号放大的2’-O-甲基修饰分子信标用于高灵敏和特异性外泌体肿瘤microRNA分析2’-O-Methyl-Modified Molecular Beacons for Highly Sensitive and Specific Exosomal Tumor microRNA Analysis Based on Nuclease-Assisted Signal Amplification[J]. 分析化学进展, 2024, 14(02): 95-105. https://doi.org/10.12677/aac.2024.142012
参考文献References
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977
Selmaj, I., Cichalewska, M., Namiecinska, M., Galazka, G., Horzelski, W., Selmaj, K.W. and Mycko, M.P. (2017) Global Exosome Transcriptome Profiling Reveals Biomarkers for Multiple Sclerosis. Annals of Neurology, 81, 703-717. https://doi.org/10.1002/ana.24931
Barile, L. and Vassalli, G. (2017) Exosomes: Therapy Delivery Tools and Biomarkers of Diseases. Pharmacology & Therapeutics, 174, 63-78. https://doi.org/10.1016/j.pharmthera.2017.02.020
Cheng, N., Du, D., Wang, X., Liu, D., Xu, W., Luo, Y. and Lin, Y. (2019) Recent Advances in Biosensors for Detecting Cancer-Derived Exosomes. Trends in Biotechnology, 37, 1236-1254. https://doi.org/10.1016/j.tibtech.2019.04.008
Stobiecka, M., Ratajczak, K. and Jakiela, S. (2019) Toward Early Cancer Detection: Focus on Biosensing Systems and Biosensors for an Anti-Apoptotic Protein Survivin and Survivin mRNA. Biosensors and Bioelectronics, 137, 58-71. https://doi.org/10.1016/j.bios.2019.04.060
Drula, R., Ott, L.F., Berindan-Neagoe, I., Pantel, K. and Calin, G.A. (2020) MicroRNAs from Liquid Biopsy Derived Extracellular Vesicles: Recent Advances in Detection and Characterization Methods. Cancers, 12, Article 2009. https://doi.org/10.3390/cancers12082009
Cui, L., Peng, R.X., Zeng, C.F., Zhang, J.L., Lu, Y.Z., Zhu, L., Huang, M.J., Tian, Q.H., Song, Y.L. and Yang, C.Y. (2022) A General Strategy for Detection of Tumor-Derived Extracellular Vesicle MicroRNAs Using Aptamer-Mediated Vesicle Fusion. Nano Today, 46, Article 101599. https://doi.org/10.1016/j.nantod.2022.101599
Niu, Q., Gao, J., Zhao, K., Chen, X., Lin, X., Huang, C., An, Y., Xiao, X., Wu, Q., Cui, L., Zhang, P., Wu, L. and Yang, C. (2022) Fluid Nanoporous Microinterface Enables Multiscale-Enhanced Affinity Interaction for Tumor-Derived Extracellular Vesicle Detection. Proceedings of the National Academy of Sciences of the United States of America, 119, e2213236119. https://doi.org/10.1073/pnas.2213236119
Jet, T., Gines, G., Rondelez, Y. and Taly, V. (2021) Advances in Multiplexed Techniques for the Detection and Quantification of MicroRNAs. Chemical Society Reviews, 50, 4141-4161. https://doi.org/10.1039/D0CS00609B
Wu, Y., Zhang, Y., Zhang, X., Luo, S., Yan, X., Qiu, Y., Zheng, L. and Li, L. (2021) Research Advances for Exosomal miRNAs Detection in Biosensing: From the Massive Study to the Individual Study. Biosensors and Bioelectronics, 177, Article 112962. https://doi.org/10.1016/j.bios.2020.112962
Ouyang, T., Liu, Z., Han, Z. and Ge, Q. (2019) MicroRNA Detection Specificity: Recent Advances and Future Perspective. Analytical Chemistry, 91, 3179-3186. https://doi.org/10.1021/acs.analchem.8b05909
Cheng, Y., Dong, L., Zhang, J., Zhao, Y. and Li, Z. (2018) Recent Advances in MicroRNA Detection. Analyst, 143, 1758-1774. https://doi.org/10.1039/C7AN02001E
Zhou, S., Sun, H., Dong, J., Lu, P., Deng, L., Liu, Y., Yang, M., Huo, D. and Hou, C. (2023) Highly Sensitive and Facile MicroRNA Detection Based on Target Triggered Exponential Rolling-Circle Amplification Coupling with CRISPR/ Cas12a. Analytica Chimica Acta, 1265, Article 341278. https://doi.org/10.1016/j.aca.2023.341278
Cui, L., Lin, X., Lin, N., Song, Y., Zhu, Z., Chen, X. and Yang, C.J. (2012) Graphene Oxide-Protected DNA Probes for Multiplex MicroRNA Analysis in Complex Biological Samples Based on a Cyclic Enzymatic Amplification Method. Chemical Communications, 48, 194-196. https://doi.org/10.1039/C1CC15412E
Jin, D., Yang, F., Zhang, Y., Liu, L., Zhou, Y., Wang, F. and Zhang, G.J. (2018) ExoAPP: Exosome-Oriented, Aptamer Nanoprobe-Enabled Surface Proteins Profiling and Detection. Analytical Chemistry, 90, 14402-14411. https://doi.org/10.1021/acs.analchem.8b03959
Wang, H., Chen, H., Huang, Z., Li, T., Deng, A. and Kong, J. (2018) DNase I Enzyme-Aided Fluorescence Signal Amplification Based on Graphene Oxide-DNA Aptamer Interactions for Colorectal Cancer Exosome Detection. Talanta, 184, 219-226. https://doi.org/10.1016/j.talanta.2018.02.083
Wu, Y., Cui, S., Li, Q., Zhang, R., Song, Z., Gao, Y., Chen, W. and Xing, D. (2020) Recent Advances in Duplex-Specific Nuclease-Based Signal Amplification Strategies for MicroRNA Detection. Biosensors and Bioelectronics, 165, Article 112449. https://doi.org/10.1016/j.bios.2020.112449
Lin, X.Y., Zhang, C., Huang, Y.S., Zhu, Z., Chen, X. and Yang, C.J. (2013) Backbone-Modified Molecular Beacons for Highly Sensitive and Selective Detection of MicroRNAs Based on Duplex Specific Nuclease Signal Amplification. Chemical Communications, 49, 7243-7245. https://doi.org/10.1039/c3cc43224f
Li, Y., Zhang, J., Zhao, J., Zhao, L., Cheng, Y. and Li, Z. (2016) A Simple Molecular Beacon with Duplex-Specific Nuclease Amplification for Detection of MicroRNA. Analyst, 141, 1071-1076. https://doi.org/10.1039/C5AN02312B
Gao, J.F., Li, Y., Li, W.Q., Zeng, C.F., Xi, F.N., Huang, J.H. and Cui, L. (2020) 2’-O-Methyl Molecular Beacon: A Promising Molecular Tool That Permits Elimination of Sticky-End Pairing and Improvement of Detection Sensitivity. RSC Advances, 10, 41618-41624. https://doi.org/10.1039/D0RA07341E
Zheng, H.Y., Lin, Q.Y., Zhu, J.C., Rao, Y.M., Cui, L., Bao, Y.Y. and Ji, T.H. (2021) DNase I-Assisted 2’-O-Methyl Molecular Beacon for Amplified Detection of Tumor Exosomal MicroRNA-21. Talanta, 235, Article 122727. https://doi.org/10.1016/j.talanta.2021.122727
Sun, X., Ying, N., Ju, C., Li, Z., Xu, N., Qu, G., Liu, W. and Wan, J. (2018) Modified Beacon Probe Assisted Dual Signal Amplification for Visual Detection of MicroRNA. Analytical Biochemistry, 550, 68-71. https://doi.org/10.1016/j.ab.2018.04.010
Yin, B.C., Liu, Y.Q. and Ye, B.C. (2012) One-Step, Multiplexed Fluorescence Detection of MicroRNAs Based on Duplex-Specific Nuclease Signal Amplification. Journal of the American Chemical Society, 134, 5064-5067. https://doi.org/10.1021/ja300721s
Tsourkas, A., Behlke, M.A. and Bao, G. (2002) Hybridization of 2’-O-Methyl and 2’-Deoxy Molecular Beacons to RNA and DNA Targets. Nucleic Acids Research, 30, 5168-5174. https://doi.org/10.1093/nar/gkf635
Wang, Y., Gao, X., Wei, F., Zhang, X., Yu, J., Zhao, H., Sun, Q., Yan, F., Yan, C., Li, H. and Ren, X. (2014) Diagnostic and Prognostic Value of Circulating miR-21 for Cancer: A Systematic Review and Meta-Analysis. Gene, 533, 389-397. https://doi.org/10.1016/j.gene.2013.09.038
Calin, G.A. and Croce, C.M. (2006) MicroRNA Signatures in Human Cancers. Nature Reviews. Cancer, 6, 857-866. https://doi.org/10.1038/nrc1997
Wang, Q., Yin, B.C. and Ye, B.C. (2016) A Novel Polydopamine-Based Chemiluminescence Resonance Energy Transfer Method for MicroRNA Detection Coupling Duplex-Specific Nuclease-Aided Target Recycling Strategy. Biosensors and Bioelectronics, 80, 366-372. https://doi.org/10.1016/j.bios.2016.02.005
Yang, C., Dou, B., Shi, K., Chai, Y., Xiang, Y. and Yuan, R. (2014) Multiplexed and Amplified Electronic Sensor for the Detection of MicroRNAs from Cancer Cells. Analytical Chemistry, 86, 11913-11918. https://doi.org/10.1021/ac503860d
Yuan, Y.H., Chi, B.Z., Wen, S.H., Liang, R.P., Li, Z.M. and Qiu, J.D. (2018) Ratiometric Electrochemical Assay for Sensitive Detecting MicroRNA Based on Dual-Amplification Mechanism of Duplex-Specific Nuclease and Hybridization Chain Reaction. Biosensors and Bioelectronics, 102, 211-216. https://doi.org/10.1016/j.bios.2017.11.030
Wang, H., He, D., Wan, K., Sheng, X., Cheng, H., Huang, J., Zhou, X., He, X. and Wang, K. (2020) In situ Multiplex Detection of Serum Exosomal MicroRNAs Using an All-in-One Biosensor for Breast Cancer Diagnosis. Analyst, 145, 3289-3296. https://doi.org/10.1039/D0AN00393J
Lee, J.H., Kim, J.A., Kwon, M.H., Kang, J.Y. and Rhee, W.J. (2015) In situ Single Step Detection of Exosome MicroRNA Using Molecular Beacon. Biomaterials, 54, 116-125. https://doi.org/10.1016/j.biomaterials.2015.03.014
Gao, Z., Yuan, H., Mao, Y., Ding, L., Effah, C.Y., He, S., He, L., Liu, L.E., Yu, S., Wang, Y., Wang, J., Tian, Y., Yu, F., Guo, H., Miao, L., Qu, L. and Wu, Y. (2021) In situ Detection of Plasma Exosomal MicroRNA for Lung Cancer Diagnosis Using Duplex-Specific Nuclease and MoS2 Nanosheets. Analyst, 146, 1924-1931. https://doi.org/10.1039/D0AN02193H
Liu, H., Fan, J.L., Liu, W.P., Tong, C.Y., Xie, Z.H., Deng, R.L. and Long, X.Y. (2018) A Dual Signal Amplification Method for miR-204 Assay by Combining Chimeric Molecular Beacon with Double-Stranded Nuclease. Analytical Methods, 10, 5834-5841. https://doi.org/10.1039/C8AY02147C
Xie, Y., Lin, X.Y., Huang, Y.S., Pan, R.J., Zhu, Z., Zhou, L.J. and Yang, C.Y.J. (2015) Highly Sensitive and Selective Detection of miRNA: DNase I-Assisted Target Recycling Using DNA Probes Protected by Polydopamine Nanospheres. Chemical Communications, 51, 2156-2158. https://doi.org/10.1039/C4CC08912J
Tang, Y.F., Liu, M.X., Xu, L.C., Tian, J.N., Yang, X.L., Zhao, Y.C. and Zhao, S.L. (2018) A Simple and Rapid Dual-Cycle Amplification Strategy for MicroRNA Based on Graphene Oxide and Exonuclease III-Assisted Fluorescence Recovery. Analytical Methods, 10, 3777-3782. https://doi.org/10.1039/C8AY01106K
Liu, M.X., Liang, S.P., Tang, Y.F., Tian, J.N., Zhao, Y.C. and Zhao, S.L. (2018) Rapid and Label-Free Fluorescence Bioassay for MicroRNA Based on Exonuclease III-Assisted Cycle Amplification. RSC Advances, 8, 15967-15972. https://doi.org/10.1039/C8RA01605D
Wei, K.J., Zhao, J.J., Qin, Y.F., Li, S.T., Huang, Y. and Zhao, S.L. (2018) A Novel Multiplex Signal Amplification Strategy Based on Microchip Electrophoresis Platform for the Improved Separation and Detection of MicroRNAs. Talanta, 189, 437-441. https://doi.org/10.1016/j.talanta.2018.07.037
Bonnet, G., Tyagi, S., Libchaber, A. and Kramer, F.R. (1999) Thermodynamic Basis of the Enhanced Specificity of Structured DNA Probes. Proceedings of the National Academy of Sciences of the United States of America, 96, 6171-6176. https://doi.org/10.1073/pnas.96.11.6171
Lu, Y.Y., Wang, L. and Chen, H.Q. (2019) Turn-on Detection of MicroRNA155 Based on Simple UCNPs-DNA-AuNPs Luminescence Energy Transfer Probe and Duplex-Specific Nuclease Signal Amplification. Spectrochimica Acta Part A: Molecular Spectroscopy, 223, Article 117345. https://doi.org/10.1016/j.saa.2019.117345
Li, Y.T., Tang, D.H., Zhu, L., Cai, J.T., Chu, C.N., Wang, J., Xia, M., Cao, Z.Z. and Zhu, H. (2019) Label-Free Detection of miRNA Cancer Markers Based on Terminal Deoxynucleotidyl Transferase-Induced Copper Nanoclusters. Analytical Biochemistry, 585, Article 113346. https://doi.org/10.1016/j.ab.2019.113346
Liu, Q., Kang, P.J., Chen, Z.P., Shi, C.X., Chen, Y. and Yu, R.Q. (2019) Highly Specific and Sensitive Detection of MicroRNAs by Tandem Signal Amplification Based on Duplex-Specific Nuclease and Strand Displacement. Chemical Communications, 55, 14210-14213. https://doi.org/10.1039/C9CC06790F
Degliangeli, F., Kshirsagar, P., Brunetti, V., Pompa, P.P. and Fiammengo, R. (2014) Absolute and Direct MicroRNA Quantification Using DNA-Gold Nanoparticle Probes. Journal of the American Chemical Society, 136, 2264-2267. https://doi.org/10.1021/ja412152x
Tan, L., Xu, L., Liu, J.W., Tang, L.J., Tang, H. and Yu, R.Q. (2019) Duplex-Specific Nuclease-Mediated Target Recycling Amplification for Fluorescence Detection of MicroRNA. Analytical Methods, 11, 200-204. https://doi.org/10.1039/C8AY02265H
Peng, W.P., Zhao, Q., Piao, J.F., Zhao, M., Huang, Y.W., Zhang, B., Gao, W.C., Zhou, D.M., Shu, G.M., Gong, X.Q. and Chang, J. (2018) Ultra-Sensitive Detection of MicroRNA-21 Based on Duplex-Specific Nuclease-Assisted Target Recycling and Horseradish Peroxidase Cascading Signal Amplification. Sensors and Actuators B: Chemical, 263, 289-297. https://doi.org/10.1016/j.snb.2018.02.143
Xiao, M.S., Chandrasekaran, A.R., Ji, W., Li, F., Man, T.T., Zhu, C.F., Shen, X.Z., Pei, H., Li, Q. and Li, L. (2018) Affinity-Modulated Molecular Beacons on MoS2 Nanosheets for MicroRNA Detection. ACS Applied Materials & Interfaces, 10, 35794-35800. https://doi.org/10.1021/acsami.8b14035
Wu, Z.F., Zhou, H., He, J., Li, M., Ma, X.M., Xue, J., Li, X. and Fan, X.T. (2019) G-Triplex Based Molecular Beacon with Duplex-Specific Nuclease Amplification for the Specific Detection of MicroRNA. Analyst, 144, 5201-5206. https://doi.org/10.1039/C9AN01075K