非酒精性脂肪性肝病(Non-alcoholic fatty liver disease, NAFLD)是一种发病率较高的常见慢性肝病,其发病机制较为复杂,为药物研发带来困难。肝窦内皮细胞(liver sinusoidal endothelial cells, LSECs)位于肝血窦表面,是肝脏与血液接触的第一道防线,也是肝脏中含量最多的非实质细胞。LSECs作为肝脏内高度特化的内皮细胞,由于其独特的结构以及功能在NAFLD的发生与进展中都扮演了重要的角色,并且可以为NAFLD药物研发带来新思路。本文主要针对LSECs及其功能障碍在NAFLD中参与到的发病机制进行综述,并对以改善LSECs功能障碍为靶点的药物进行介绍。 Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with a high incidence rate, and its pathogenesis is complex, posing challenges for drug development. Liver sinusoidal endothelial cells (LSECs) are located on the surface of the liver sinusoids, serving as the first line of defense between the liver and blood, and they are the most abundant non-parenchymal cells in the liver. LSECs, as highly specialized endothelial cells in the liver, play an important role in the occurrence and progression of NAFLD due to their unique structure and function, offering new insights for NAFLD drug development. This review focuses on the involvement of LSECs and their functional impairments in the pathogenesis of NAFLD, and introduces drugs that target improving LSECs dysfunction.
1School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing Jiangsu
2State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing Jiangsu
3Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing Jiangsu
4NMPA Key Laboratory for Research and Evaluation of Cosmetics, National Institutes for Food and Drug Control, Beijing
Received: Apr. 16th, 2024; accepted: May 14th, 2024; published: May 21st, 2024
ABSTRACT
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with a high incidence rate, and its pathogenesis is complex, posing challenges for drug development. Liver sinusoidal endothelial cells (LSECs) are located on the surface of the liver sinusoids, serving as the first line of defense between the liver and blood, and they are the most abundant non-parenchymal cells in the liver. LSECs, as highly specialized endothelial cells in the liver, play an important role in the occurrence and progression of NAFLD due to their unique structure and function, offering new insights for NAFLD drug development. This review focuses on the involvement of LSECs and their functional impairments in the pathogenesis of NAFLD, and introduces drugs that target improving LSECs dysfunction.
黄玥勤,刘秋言,岳芸芸,尚 靖. 肝窦内皮细胞在NAFLD疾病中的作用The Role of Liver Sinusoidal Endothelial Cells in NAFLD Disease[J]. 药物资讯, 2024, 13(03): 204-214. https://doi.org/10.12677/pi.2024.133025
参考文献References
Younossi, Z.M. (2019) Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. Journal of Hepatology, 70, 531-544. https://doi.org/10.1016/j.jhep.2018.10.033
Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M., et al. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922. https://doi.org/10.1038/s41591-018-0104-9
Eslam, M., Sanyal, A.J. and George, J. (2020) MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology, 158, 1999-2014. https://doi.org/10.1053/j.gastro.2019.11.312
Riazi, K., Azhari, H., Charette, J.H., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology and Hepatology, 7, 851-861. https://doi.org/10.1016/S2468-1253(22)00165-0
Fernández, M., Semela, D., Bruix, J., et al. (2009) Angiogenesis in Liver Disease. Journal of Hepatology, 50, 604-620. https://doi.org/10.1016/j.jhep.2008.12.011
Nasiri-Ansari, N., Androutsakos T., Flessa, C.M., et al. (2022) Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells, 11, Article 2511. https://doi.org/10.3390/cells11162511
Aird, W.C. (2007) Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, and Mechanisms. Circulation Research, 100, 158-173. https://doi.org/10.1161/01.RES.0000255691.76142.4a
Lafoz, E., Ruart, M., Anton, A., et al. (2020) The Endothelium as a Driver of Liver Fibrosis and Regeneration. Cells, 9, Article 929. https://doi.org/10.3390/cells9040929
Sun, X. and Harris, E.N. (2020) New Aspects of Hepatic Endothelial Cells in Physiology and Nonalcoholic Fatty Liver Disease. American Journal of Physiology-Cell Physiology, 318, C1200-C1213. https://doi.org/10.1152/ajpcell.00062.2020
Wisse, E. (1970) An Electron Microscopic Study of the Fenestrated Endothelial Lining of Rat Liver Sinusoids. Journal of Ultrastructure Research, 31, 125-150. https://doi.org/10.1016/S0022-5320(70)90150-4
DeLeve, L.D., Wang, X., Hu, L., et al. (2004) Rat Liver Sinusoidal Endothelial Cell Phenotype Is Maintained by Paracrine and Autocrine Regulation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 287, G757-G763. https://doi.org/10.1152/ajpgi.00017.2004
May, D., Djonov, V., Zamir, G., et al. (2011) A Transgenic Model for Conditional Induction and Rescue of Portal Hypertension Reveals a Role of VEGF-Mediated Regulation of Sinusoidal Fenestrations. PLOS ONE, 6, e21478. https://doi.org/10.1371/journal.pone.0021478
Xie, G., Wang, X., Wang, L., et al. (2012) Role of Differentiation of Liver Sinusoidal Endothelial Cells in Progression and Regression of Hepatic Fibrosis in Rats. Gastroenterology, 142, 918-927. https://doi.org/10.1053/j.gastro.2011.12.017
Cogger, V.C., Hilmer, S.N., Sullivan, D., et al. (2006) Hyperlipidemia and Surfactants: The Liver Sieve Is a Link. Atherosclerosis, 189, 273-281. https://doi.org/10.1016/j.atherosclerosis.2005.12.025
Iwakiri, Y. and Kim, M.Y. (2015) Nitric Oxide in Liver Diseases. Trends in Pharmacological Sciences, 36, 524-536. https://doi.org/10.1016/j.tips.2015.05.001
Deleve, L.D., Wang, X. and Guo, Y. (2008) Sinusoidal Endothelial Cells Prevent Rat Stellate Cell Activation and Promote Reversion to Quiescence. Hepatology, 48, 920-930. https://doi.org/10.1002/hep.22351
Shetty, S., Lalor, P.F. and Adams, D.H. (2018) Liver Sinusoidal Endothelial Cells-Gatekeepers of Hepatic Immunity. Nature Reviews Gastroenterology & Hepatology, 15, 555-567. https://doi.org/10.1038/s41575-018-0020-y
Wu, J., Meng, Z., Jiang, M., et al. (2010) Toll-Like Receptor-Induced Innate Immune Responses in Non-Parenchymal Liver Cells Are Cell Type-Specific. Immunology, 129, 363-374. https://doi.org/10.1111/j.1365-2567.2009.03179.x
Wohlleber, D. and Knolle, P.A. (2016) The Role of Liver Sinusoidal Cells in Local Hepatic Immune Surveillance. Clinical & Translational Immunology, 5, e117. https://doi.org/10.1038/cti.2016.74
Poisson, J., Lemoinne, S., Boulanger, C., et al. (2017) Liver Sinusoidal Endothelial Cells: Physiology and Role in Liver Diseases. Journal of Hepatology, 66, 212-227. https://doi.org/10.1016/j.jhep.2016.07.009
Meyer, J., Balaphas, A., Fontana, P., et al. (2020) Platelet Interactions with Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells Lead to Hepatocyte Proliferation. Cells, 9, Article 1243. https://doi.org/10.3390/cells9051243
Hilscher, M.B., Sehrawat, T., Arab, J.P., et al. (2019) Mechanical Stretch Increases Expression of CXCL1 in Liver Sinusoidal Endothelial Cells to Recruit Neutrophils, Generate Sinusoidal Microthombi, and Promote Portal Hypertension. Gastroenterology, 157, 193-209. https://doi.org/10.1053/j.gastro.2019.03.013
Yang, H., Li, N., Du, Y., et al. (2017) Neutrophil Adhesion and Crawling Dynamics on Liver Sinusoidal Endothelial Cells under Shear Flow. Experimental Cell Research, 351, 91-99. https://doi.org/10.1016/j.yexcr.2017.01.002
Velarde-Ruiz Velasco, J.A., García-Jiménez, E.S., García-Zermeño, K.R., et al. (2019) Extrahepatic Complications of Non-Alcoholic Fatty Liver Disease: Its Impact Beyond the Liver. Revista de Gastroenterología de México (English Edition), 84, 472-481. https://doi.org/10.1016/j.rgmxen.2019.05.004
Ogresta, D., Mrzljak, A., Cigrovski Berkovic, M., et al. (2022) Coagulation and Endothelial Dysfunction Associated with NAFLD: Current Status and Therapeutic Implications. Journal of Clinical and Translational Hepatology, 10, 339-355. https://doi.org/10.14218/JCTH.2021.00268
Stahl, E.P., Dhindsa, D.S., Lee, S.K., et al. (2019) Nonalcoholic Fatty Liver Disease and the Heart: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73, 948-963. https://doi.org/10.1016/j.jacc.2018.11.050
Fraser, R., Dobbs, B.R. and Rogers, G.W. (1995) Lipoproteins and the Liver Sieve: The Role of the Fenestrated Sinusoidal Endothelium in Lipoprotein Metabolism, Atherosclerosis, and Cirrhosis. Hepatology, 21, 863-874. https://doi.org/10.1002/hep.1840210337
Pasarín, M., La Mura, V., Gracia-Sancho, J., et al. (2012) Sinusoidal Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD. PLOS ONE, 7, e32785. https://doi.org/10.1371/journal.pone.0032785
Wang, X.-K. and Peng, Z.-G. (2021) Targeting Liver Sinusoidal Endothelial Cells: An Attractive Therapeutic Strategy to Control Inflammation in Nonalcoholic Fatty Liver Disease. Frontiers in Pharmacology, 12, Article 655557. https://doi.org/10.3389/fphar.2021.655557
Furuta, K., Guo, Q., Hirsova, P., et al. (2020) Emerging Roles of Liver Sinusoidal Endothelial Cells in Nonalcoholic Steatohepatitis. Biology, 9, Article 395. https://doi.org/10.3390/biology9110395
Federico, A., Dallio, M., Masarone, M., et al. (2016) The Epidemiology of Non-Alcoholic Fatty Liver Disease and Its Connection with Cardiovascular Disease: Role of Endothelial Dysfunction. European Review for Medical and Pharmacological Sciences, 20, 4731-4741.
Maslak, E., Gregorius, A. and Chlopicki, S. (2015) Liver Sinusoidal Endothelial Cells (LSECs) Function and NAFLD; NO-Based Therapy Targeted to the Liver. Pharmacological Reports, 67, 689-694. https://doi.org/10.1016/j.pharep.2015.04.010
Targher, G., Byrne, C.D., Lonardo, A., et al. (2016) Non-Alcoholic Fatty Liver Disease and Risk of Incident Cardiovascular Disease: A Meta-Analysis. Journal of Hepatology, 65, 589-600. https://doi.org/10.1016/j.jhep.2016.05.013
Schierwagen, R., Uschner, F.E., Magdaleno, F., et al. (2017) Rationale for the Use of Statins in Liver Disease. American Journal of Physiology-Gastrointestinal and Liver Physiology, 312, G407-G412. https://doi.org/10.1152/ajpgi.00441.2016
Schleicher, J., Guthke, R., Dahmen, U., et al. (2014) A Theoretical Study of Lipid Accumulation in the Liver-Implications for Nonalcoholic Fatty Liver Disease. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1841, 62-69. https://doi.org/10.1016/j.bbalip.2013.08.016
Sun, C.K., Zhang, X.Y., Zimmermann, A., et al. (2001) Effect of Ischemia-Reperfusion Injury on the Microcirculation of the Steatotic Liver of the Zucker Rat. Transplantation, 72, 1625-1631. https://doi.org/10.1097/00007890-200111270-00008
Hasegawa, T., Ito, Y., Wijeweera, J., et al. (2007) Reduced Inflammatory Response and Increased Microcirculatory Disturbances during Hepatic Ischemia-Reperfusion Injury in Steatotic Livers of ob/ob Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292, G1385-G1395. https://doi.org/10.1152/ajpgi.00246.2006
Teoh, N.C., Williams, J., Hartley, J., et al. (2010) Short-Term Therapy with Peroxisome Proliferation-Activator Receptor-Alpha Agonist Wy-14,643 Protects Murine Fatty Liver Against Ischemia-Reperfusion Injury. Hepatology, 51, 996-1006. https://doi.org/10.1002/hep.23420
Farrell, G.C., Teoh, N.C. and McCuskey, R.S. (2008) Hepatic Microcirculation in Fatty Liver Disease. The Anatomical Record, 291, 684-692. https://doi.org/10.1002/ar.20715
Davies, P.F. (1995) Flow-Mediated Endothelial Mechanotransduction. Physiological Reviews, 75, 519-560. https://doi.org/10.1152/physrev.1995.75.3.519
Gonzalez-Paredes, F.J., Hernández Mesa, G., Morales Arraez, D., et al. (2016) Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease. PLOS ONE, 11, e0156650. https://doi.org/10.1371/journal.pone.0156650
Fernandez, M. (2015) Molecular Pathophysiology of Portal Hypertension. Hepatology, 61, 1406-1415. https://doi.org/10.1002/hep.27343
Cogger, V.C., Mohamad, M., Solon-Biet, S.M., et al. (2016) Dietary Macronutrients and the Aging Liver Sinusoidal Endothelial Cell. American Journal of Physiology-Heart and Circulatory Physiology, 310, H1064-H1070. https://doi.org/10.1152/ajpheart.00949.2015
Peng, Q., Zhang, Q., Xiao, W., et al. (2014) Protective Effects of Sapindus Mukorossi Gaertn against Fatty Liver Disease Induced by High Fat Diet in Rats. Biochemical and Biophysical Research Communications, 450, 685-691. https://doi.org/10.1016/j.bbrc.2014.06.035
Zhang, Q., Liu, J., Liu, J., et al. (2014) oxLDL Induces Injury and Defenestration of Human Liver Sinusoidal Endothelial Cells via LOX1. Journal of Molecular Endocrinology, 53, 281-293. https://doi.org/10.1530/JME-14-0049
Hammoutene, A., Rautou, P.E. (2019) Role of Liver Sinusoidal Endothelial Cells in Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 70, 1278-1291. https://doi.org/10.1016/j.jhep.2019.02.012
Miyao, M., Kotani, H., Ishida, T., et al. (2015) Pivotal Role of Liver Sinusoidal Endothelial Cells in NAFLD/NASH Progression. Laboratory Investigation, 95, 1130-1144. https://doi.org/10.1038/labinvest.2015.95
Herrnberger, L., Hennig, R., Kremer, W., et al. (2014) Formation of Fenestrae in Murine Liver Sinusoids Depends on Plasmalemma Vesicle-Associated Protein and Is Required for Lipoprotein Passage. PLOS ONE, 9, e115005. https://doi.org/10.1371/journal.pone.0115005
Chen, L., Gu, T., Li, B., et al. (2019) Delta-Like Ligand 4/DLL4 Regulates the Capillarization of Liver Sinusoidal Endothelial Cell and Liver Fibrogenesis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1866, 1663-1675. https://doi.org/10.1016/j.bbamcr.2019.06.011
Bonnardel, J., T’Jonck, W., Gaublomme, D., et al. (2019) Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 51, 638-654. https://doi.org/10.1016/j.immuni.2019.08.017
Desroches-Castan, A., Tillet, E., Ricard, N., et al. (2019) Bone Morphogenetic Protein 9 Is a Paracrine Factor Controlling Liver Sinusoidal Endothelial Cell Fenestration and Protecting against Hepatic Fibrosis. Hepatology, 70, 1392-1408. https://doi.org/10.1002/hep.30655
Carambia, A., Freund, B., Schwinge, D., et al. (2014) TGF-β-Dependent Induction of CD4CD25Foxp3 Tregs by Liver Sinusoidal Endothelial Cells. Journal of Hepatology, 61, 594-599. https://doi.org/10.1016/j.jhep.2014.04.027
Tateya, S., Rizzo, N.O., Handa, P., et al. (2011) Endothelial NO/cGMP/VASP Signaling Attenuates Kupffer Cell Activation and Hepatic Insulin Resistance Induced by High-Fat Feeding. Diabetes, 60, 2792-2801. https://doi.org/10.2337/db11-0255
McMahan, R.H., Porsche, C.E., Edwards, M.G., et al. (2016) Free Fatty Acids Differentially Downregulate Chemokines in Liver Sinusoidal Endothelial Cells: Insights into Non-Alcoholic Fatty Liver Disease. PLOS ONE, 11, e0159217. https://doi.org/10.1371/journal.pone.0159217
Weston, C.J., Shepherd, E.L., Claridge, L.C., et al. (2015) Vascular Adhesion Protein-1 Promotes Liver Inflammation and Drives Hepatic Fibrosis. Journal of Clinical Investigation, 125, 501-520. https://doi.org/10.1172/JCI73722
Tomita, K., Tamiya, G., Ando, S., et al. (2006) Tumour Necrosis Factor Alpha Signalling through Activation of Kupffer Cells Plays an Essential Role in Liver Fibrosis of Non-Alcoholic Steatohepatitis in Mice. Gut, 55, 415-424. https://doi.org/10.1136/gut.2005.071118
Miyachi, Y., Tsuchiya, K., Komiya, C., et al. (2017) Roles for Cell-Cell Adhesion and Contact in Obesity-Induced Hepatic Myeloid Cell Accumulation and Glucose Intolerance. Cell Reports, 18, 2766-2779. https://doi.org/10.1016/j.celrep.2017.02.039
Dela Peña, A., Leclercq, I., Field, J., et al. (2005) NF-KappaB Activation, Rather than TNF, Mediates Hepatic Inflammation in a Murine Dietary Model of Steatohepatitis. Gastroenterology, 129, 1663-1674. https://doi.org/10.1053/j.gastro.2005.09.004
Marra, F. and Tacke, F. (2014) Roles for Chemokines in Liver Disease. Gastroenterology, 147, 577-594. https://doi.org/10.1053/j.gastro.2014.06.043
Nagata, N., Chen, G., Xu, L., et al. (2022) An Update on the Chemokine System in the Development of NAFLD. Medicina, 58, Article 761. https://doi.org/10.3390/medicina58060761
Edwards, S., Lalor, P.F., Nash, G.B., et al. (2005) Lymphocyte Traffic through Sinusoidal Endothelial Cells Is Regulated by Hepatocytes. Hepatology, 41, 451-459. https://doi.org/10.1002/hep.20585
Wilkinson, A.L., Qurashi, M. and Shetty, S. (2020) The Role of Sinusoidal Endothelial Cells in the Axis of Inflammation and Cancer within the Liver. Frontiers in Physiology, 11, Article 990. https://doi.org/10.3389/fphys.2020.00990
Martin-Armas, M., Simon-Santamaria, J., Pettersen, I., et al. (2006) Toll-Like Receptor 9 (TLR9) Is Present in Murine Liver Sinusoidal Endothelial Cells (LSECs) and Mediates the Effect of CpG-Oligonucleotides. Journal of Hepatology, 44, 939-946. https://doi.org/10.1016/j.jhep.2005.09.020
Sutter, A.G., Palanisamy, A.P., Lench, J.H., et al. (2016) Dietary Saturated Fat Promotes Development of Hepatic Inflammation through Toll-Like Receptor 4 in Mice. Journal of Cellular Biochemistry, 117, 1613-1621. https://doi.org/10.1002/jcb.25453
Zhou, L.Y., Zeng, H., Wang, S., et al. (2018) Regulatory Role of Endothelial PHD2 in the Hepatic Steatosis. Cellular Physiology and Biochemistry, 48, 1003-1011. https://doi.org/10.1159/000491968
Jarnagin, W.R., Rockey, D.C., Koteliansky, V.E., et al. (1994) Expression of Variant Fibronectins in Wound Healing: Cellular Source and Biological Activity of the EIIIA Segment in Rat Hepatic Fibrogenesis. Journal of Cell Biology, 127, 2037-2048. https://doi.org/10.1083/jcb.127.6.2037
Kisseleva, T. and Brenner, D. (2021) Molecular and Cellular Mechanisms of Liver Fibrosis and Its Regression. Nature Reviews Gastroenterology & Hepatology, 18, 151-166. https://doi.org/10.1038/s41575-020-00372-7
Wan, Y., Li, X., Slevin, E., et al. (2022) Endothelial Dysfunction in Pathological Processes of Chronic Liver Disease during Aging. The FASEB Journal, 36, e22125. https://doi.org/10.1096/fj.202101426R
Ding, B.S., Nolan, D.J., Butler, J.M., et al. (2010) Inductive Angiocrine Signals from Sinusoidal Endothelium Are Required for Liver Regeneration. Nature, 468, 310-315. https://doi.org/10.1038/nature09493
Hu, J., Srivastava, K., Wieland, M., et al. (2014) Endothelial Cell-Derived Angiopoietin-2 Controls Liver Regeneration as a Spatiotemporal Rheostat. Science, 343, 416-419. https://doi.org/10.1126/science.1244880
Ding, B.S., Cao, Z., Lis, R., et al. (2014) Divergent Angiocrine Signals from Vascular Niche Balance Liver Regeneration and Fibrosis. Nature, 505, 97-102. https://doi.org/10.1038/nature12681
Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224. https://doi.org/10.1016/S0140-6736(20)32511-3
Yu, Z., Guo, J., Liu, Y., et al. (2022) Nano Delivery of Simvastatin Targets Liver Sinusoidal Endothelial Cells to Remodel Tumor Microenvironment for Hepatocellular Carcinoma. Journal of Nanobiotechnology, 20, Article No. 9. https://doi.org/10.1186/s12951-021-01205-8
Bravo, M., Raurell, I., Hide, D., et al. (2019) Restoration of Liver Sinusoidal Cell Phenotypes by Statins Improves Portal Hypertension and Histology in Rats with NASH. Scientific Reports, 9, Article No. 20183. https://doi.org/10.1038/s41598-019-56366-2
da Silva Pereira, E.N.G., Araujo, B.P., Rodrigues, K.L., et al. (2022) Simvastatin Improves Microcirculatory Function in Nonalcoholic Fatty Liver Disease and Downregulates Oxidative and ALE-RAGE Stress. Nutrients, 14, Article 716. https://doi.org/10.3390/nu14030716
Furuta, K., Guo, Q., Pavelko, K.D., et al. (2021) Lipid-Induced Endothelial Vascular Cell Adhesion Molecule 1 Promotes Nonalcoholic Steatohepatitis Pathogenesis. The Journal of Clinical Investigation, 131, e143690. https://doi.org/10.1172/JCI143690
Todisco, S., Santarsiero, A., Convertini, P., et al. (2022) PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). Biology, 11, Article 792. https://doi.org/10.3390/biology11050792
Lefere, S., Van de Velde, F., Hoorens, A., et al. (2019) Angiopoietin-2 Promotes Pathological Angiogenesis and Is a Therapeutic Target in Murine Nonalcoholic Fatty Liver Disease. Hepatology, 69, 1087-1104. https://doi.org/10.1002/hep.30294
Ibrahim, S.H. (2021) Sinusoidal Endotheliopathy in Nonalcoholic Steatohepatitis: Therapeutic Implications. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321, G67-G74. https://doi.org/10.1152/ajpgi.00009.2021
Moosavian, S.A., Sathyapalan, T., Jamialahmadi, T., et al. (2021) The Emerging Role of Nanomedicine in the Management of Nonalcoholic Fatty Liver Disease: A State-of-the-Art Review. Bioinorganic Chemistry and Applications, 2021, Article ID: 4041415. https://doi.org/10.1155/2021/4041415
Salunkhe, S.A., Chitkara, D., Mahato, R.I., et al. (2021) Lipid Based Nanocarriers for Effective Drug Delivery and Treatment of Diabetes Associated Liver Fibrosis. Advanced Drug Delivery Reviews, 173, 394-415. https://doi.org/10.1016/j.addr.2021.04.003
Bhandari, S., Larsen, A.K., McCourt, P., et al. (2021) The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease. Frontiers in Physiology, 12, Article 757469. https://doi.org/10.3389/fphys.2021.757469
Zhang, L.-F., Wang, X.-H., Zhang, C.-L., et al. (2022) Sequential Nano-Penetrators of Capillarized Liver Sinusoids and Extracellular Matrix Barriers for Liver Fibrosis Therapy. ACS Nano, 16, 14029-14042. https://doi.org/10.1021/acsnano.2c03858