癌细胞产生大量的细胞质质子,作为异常激活的有氧糖酵解和乳酸发酵的副产物。为了避免细胞内酸化的不利影响,癌细胞激活了促进胞内碱化和胞外酸化的质子清除途径。越来越多的证据表明,除了质膜中一些特殊的离子泵和转运蛋白外,癌细胞溶酶体为此发生重新编程。溶酶体膜上的液泡型H–三磷酸腺苷酶(V-ATPase)的表达和活性增加,且伴随溶酶体体积的增大,大大增加了溶酶体的质子存储能力,从而维持pH梯度逆转,促进癌细胞的生存和生长。本文主要对肿瘤细胞中的溶酶体V-ATPase的作用进行综述。 Cancer cells generate large quantities of cytoplasmic protons as byproducts of aberrantly activated aerobic glycolysis and lactate fermentation. To avoid the adverse effects of intracellular acidification, cancer cells activate multiple acid-removal pathways that promote cytosolic to the alkalization and extracellular acidification. Accumulating evidence suggests that in addition to the ion pumps and exchangers in the plasma membrane, cancer cell lysosomes are also reprogrammed for this purpose. The increased expression and activity of the vacuolar-type H-ATPase (V-ATPase) on the lysosomal limiting membrane combined with the larger volume of the lysosomal compartment increases the lysosomal proton storage capacity substantially, thereby maintaining the reversal of pH gradient and promoting the survival and growth of cancer cells. This review focuses on the role of lysosomal V-ATPase in tumor cells.
Lysosomal V-ATPase Regulates pH Homeostasis in Tumors
Danzhen Chen*, Na Wen
Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of
Technology, Hangzhou Zhejiang
Received: Apr. 16th, 2024; accepted: May 14th, 2024; published: May 21st, 2024
ABSTRACT
Cancer cells generate large quantities of cytoplasmic protons as byproducts of aberrantly activated aerobic glycolysis and lactate fermentation. To avoid the adverse effects of intracellular acidification, cancer cells activate multiple acid-removal pathways that promote cytosolic to the alkalization and extracellular acidification. Accumulating evidence suggests that in addition to the ion pumps and exchangers in the plasma membrane, cancer cell lysosomes are also reprogrammed for this purpose. The increased expression and activity of the vacuolar-type H+-ATPase (V-ATPase) on the lysosomal limiting membrane combined with the larger volume of the lysosomal compartment increases the lysosomal proton storage capacity substantially, thereby maintaining the reversal of pH gradient and promoting the survival and growth of cancer cells. This review focuses on the role of lysosomal V-ATPase in tumor cells.
参考文献References
De Duve, C., Pressman, B.C., Gianetto, R., et al. (1955) Tissue Fractionation Studies. 6. Intracellular Distribution Patterns of Enzymes in Rat-Liver Tissue. Biochemical Journal, 60, 604-617. https://doi.org/10.1042/bj0600604
Martina, J.A., Raben, N. and Puertollano, R. (2020) SnapShot: Lysosomal Storage Diseases. Cell, 180, 602-602.E1. https://doi.org/10.1016/j.cell.2020.01.017
Ballabio, A. and Bonifacino, J.S. (2020) Lysosomes as Dynamic Regulators of Cell and Organismal Homeostasis. Nature Reviews Molecular Cell Biology, 21, 101-118. https://doi.org/10.1038/s41580-019-0185-4
Chen, F., Kang, R., Liu, J., et al. (2022) The V-ATPases in Cancer and Cell Death. Cancer Gene Therapy, 29, 1529-1541. https://doi.org/10.1038/s41417-022-00477-y
Jefferies, K.C., Cipriano, D.J. and Forgac, M. (2008) Function, Structure and Regulation of the Vacuolar (H )-ATPases. Archives of Biochemistry and Biophysics, 476, 33-42. https://doi.org/10.1016/j.abb.2008.03.025
Chen, R., Jäättelä, M. and Liu, B. (2020) Lysosome as a Central Hub for Rewiring PH Homeostasis in Tumors. Cancers, 12, Article No. 2437. https://doi.org/10.3390/cancers12092437
Ellegaard, A.M., Bach, P. and Jäättelä, M. (2023) Targeting Cancer Lysosomes with Good Old Cationic Amphiphilic Drugs. Reviews of Physiology, Biochemistry and Pharmacology, 185, 107-152. https://doi.org/10.1007/112_2020_56
Webb, B.A., Chimenti, M., Jacobson, M.P., et al. (2011) Dysregulated PH: A Perfect Storm for Cancer Progression. Nature Reviews Cancer, 11, 671-677. https://doi.org/10.1038/nrc3110
Stransky, L.A. and Forgac, M. (2015) Amino Acid Availability Modulates Vacuolar H -ATPase Assembly. Journal of Biological Chemistry, 290, 27360-27369. https://doi.org/10.1074/jbc.M115.659128
Liao, Y., Fan, Z., Deng, H., et al. (2018) Zika Virus Liquid Biopsy: A Dendritic Ru(Bpy)(3) (2 )-Polymer-Amplified ECL Diagnosis Strategy Using a Drop of Blood. ACS Central Science, 4, 1403-1411. https://doi.org/10.1021/acscentsci.8b00471
Storrie, B. and Desjardins, M. (1996) The Biogenesis of Lysosomes: Is It a Kiss and Run, Continuous Fusion and Fission Process? BioEssays, 18, 895-903. https://doi.org/10.1002/bies.950181108
Palm, W., Park, Y., Wright, K., et al. (2015) The Utilization of Extracellular Proteins as Nutrients Is Suppressed by MTORC1. Cell, 162, 259-270. https://doi.org/10.1016/j.cell.2015.06.017
Mathew, R., Karantza-Wadsworth, V. and White, E. (2007) Role of Autophagy in Cancer. Nature Reviews Cancer, 7, 961-967. https://doi.org/10.1038/nrc2254
Kern, U., Wischnewski, V., Biniossek, M.L., et al. (2015) Lysosomal Protein Turnover Contributes to the Acquisition of TGFβ-1 Induced Invasive Properties of Mammary Cancer Cells. Molecular Cancer, 14, Article No. 39. https://doi.org/10.1186/s12943-015-0313-5
Fehrenbacher, N., Bastholm, L., Kirkegaard-Sørensen, T., et al. (2008) Sensitization to the Lysosomal Cell Death Pathway by Oncogene-Induced Down-Regulation of Lysosome-Associated Membrane Proteins 1 and 2. Cancer Research, 68, 6623-6633. https://doi.org/10.1158/0008-5472.CAN-08-0463
Kim, M.J., Woo, S.J., Yoon, C.H., et al. (2011) Involvement of Autophagy in Oncogenic K-Ras-Induced Malignant Cell Transformation. Journal of Biological Chemistry, 286, 12924-12932. https://doi.org/10.1074/jbc.M110.138958
Webb, B.A., Cook, J., Wittmann, T., et al. (2020) PHLARE: A Genetically Encoded Ratiometric Lysosome PH Biosensor. https://doi.org/10.1101/2020.06.03.132720
Fennelly, C. and Amaravadi, R.K. (2017) Lysosomal Biology in Cancer. Methods in Molecular Biology, 1594, 293-308. https://doi.org/10.1007/978-1-4939-6934-0_19
Martina, J.A., Diab, H.I., Lishu, L., et al. (2014) The Nutrient-Responsive Transcription Factor TFE3 Promotes Autophagy, Lysosomal Biogenesis, and Clearance of Cellular Debris. Science Signaling, 7, Ra9. https://doi.org/10.1126/scisignal.2004754
Bouché, V., Espinosa, A.P., Leone, L., et al. (2016) Drosophila Mitf Regulates the V-ATPase and the Lysosomal-Autophagic Pathway. Autophagy, 12, 484-98. https://doi.org/10.1080/15548627.2015.1134081
Hemesath, T.J., Steingrimsson, E., Mcgill, G., et al. (1994) Microphthalmia, a Critical Factor in Melanocyte Development, Defines a Discrete Transcription Factor Family. Genes & Development, 8, 2770-2780. https://doi.org/10.1101/gad.8.22.2770
Palmieri, M., Impey, S., Kang, H., et al. (2011) Characterization of the CLEAR Network Reveals an Integrated Control of Cellular Clearance Pathways. Human Molecular Genetics, 20, 3852-3866. https://doi.org/10.1093/hmg/ddr306
Jefferies, K.C. and Forgac, M. (2008) Subunit H of the Vacuolar (H ) ATPase Inhibits ATP Hydrolysis by the Free V1 Domain by Interaction with the Rotary Subunit F. Journal of Biological Chemistry, 283, 4512-4519. https://doi.org/10.1074/jbc.M707144200
Perera, R.M., Stoykova, S., Nicolay, B.N., et al. (2015) Transcriptional Control of Autophagy-Lysosome Function Drives Pancreatic Cancer Metabolism. Nature, 524, 361-365. https://doi.org/10.1038/nature14587
Giatromanolaki, A., Sivridis, E., Kalamida, D., et al. (2017) Transcription Factor EB Expression in Early Breast Cancer Relates to Lysosomal/Autophagosomal Markers and Prognosis. Clinical Breast Cancer, 17, E119-E125. https://doi.org/10.1016/j.clbc.2016.11.006
Liang, J., Jia, X., Wang, K., et al. (2018) High Expression of TFEB Is Associated with Aggressive Clinical Features in Colorectal Cancer. OncoTargets and Therapy, 11, 8089-8098. https://doi.org/10.2147/OTT.S180112
Kauffman, E.C., Ricketts, C.J., Rais-Bahrami, S., et al. (2014) Molecular Genetics and Cellular Features of TFE3 and TFEB Fusion Kidney Cancers. Nature Reviews Urology, 11, 465-475. https://doi.org/10.1038/nrurol.2014.162
Zhao, M., Rao, Q., Wu, C., et al. (2015) Alveolar Soft Part Sarcoma of Lung: Report of a Unique Case with Emphasis on Diagnostic Utility of Molecular Genetic Analysis for TFE3 Gene Rearrangement and Immunohistochemistry for TFE3 Antigen Expression. Diagnostic Pathology, 10, Article No. 160. https://doi.org/10.1186/s13000-015-0399-5
Garraway, L.A., Widlund, H.R., Rubin, M.A., et al. (2005) Integrative Genomic Analyses Identify MITF as a Lineage Survival Oncogene Amplified in Malignant Melanoma. Nature, 436, 117-122. https://doi.org/10.1038/nature03664
Möller, K., Sigurbjornsdottir, S., Arnthorsson, A.O., et al. (2019) MITF Has a Central Role in Regulating Starvation-Induced Autophagy in Melanoma. Scientific Reports, 9, Article No. 1055. https://doi.org/10.1038/s41598-018-37522-6
Ohta, T., Arakawa, H., Futagami, F., et al. (1998) Bafilomycin A1 Induces Apoptosis in the Human Pancreatic Cancer Cell Line Capan-1. The Journal of Pathology, 185, 324-330. https://doi.org/10.1002/(SICI)1096-9896(199807)185:3<324::AID-PATH72>3.0.CO;2-9
Nakashima, S., Hiraku, Y., Tada-Oikawa, S., et al. (2003) Vacuolar H -ATPase Inhibitor Induces Apoptosis via Lysosomal Dysfunction in the Human Gastric Cancer Cell Line MKN-1. The Journal of Biochemistry, 134, 359-364. https://doi.org/10.1093/jb/mvg153
Liu, P., Chen, H., Han, L., et al. (2015) Expression and Role of V1A Subunit of V-ATPases in Gastric Cancer Cells. International Journal of Clinical Oncology, 20, 725-735. https://doi.org/10.1007/s10147-015-0782-y
Collins, M.P. and Forgac, M. (2018) Regulation of V-ATPase Assembly in Nutrient Sensing and Function of V-ATPases in Breast Cancer Metastasis. Frontiers in Physiology, 9, Article No. 902. https://doi.org/10.3389/fphys.2018.00902
Hayek, S.R., Rane, H.S. and Parra, K.J. (2019) Reciprocal Regulation of V-ATPase and Glycolytic Pathway Elements in Health and Disease. Frontiers in Physiology, 10, Article No. 127. https://doi.org/10.3389/fphys.2019.00127
Tabke, K., Albertmelcher, A., Vitavska, O., et al. (2014) Reversible Disassembly of the Yeast V-ATPase Revisited Under inVivo Conditions. Biochemical Journal, 462, 185-197. https://doi.org/10.1042/BJ20131293
Dechant, R., Binda, M., Lee, S.S., et al. (2010) Cytosolic PH Is a Second Messenger for Glucose and Regulates the PKA Pathway through V-ATPase. The EMBO Journal, 29, 2515-2526. https://doi.org/10.1038/emboj.2010.138
Pérez-Sayáns, M., García-García, A., Reboiras-López, M.D., et al. (2009) Role of V-ATPases in Solid Tumors: Importance of the Subunit C (Review). International Journal of Oncology, 34, 1513-1520. https://doi.org/10.3892/ijo_00000280
Liu, B., Palmfeldt, J., Lin, L., et al. (2018) STAT3 Associates with Vacuolar H( )-ATPase and Regulates Cytosolic and Lysosomal PH. Cell Research, 28, 996-1012. https://doi.org/10.1038/s41422-018-0080-0
Yu, H., Lee, H., Herrmann, A., et al. (2014) Revisiting STAT3 Signalling in Cancer: New and Unexpected Biological Functions. Nature Reviews Cancer, 14, 736-746. https://doi.org/10.1038/nrc3818
Merkulova, M., Păunescu, T.G., Azroyan, A., et al. (2015) Mapping the H( ) (V)-ATPase Interactome: Identification of Proteins Involved in Trafficking, Folding, Assembly and Phosphorylation. Scientific Reports, 5, Article No. 14827. https://doi.org/10.1038/srep14827
Su, Y., Zhou, A., Al-Lamki, R.S., et al. (2003) The A-Subunit of the V-Type H -ATPase Interacts with Phosphofructokinase-1 in Humans. Journal of Biological Chemistry, 278, 20013-20018. https://doi.org/10.1074/jbc.M210077200
Su, Y., Blake-Palmer, K.G., Sorrell, S., et al. (2008) Human H ATPase A4 Subunit Mutations Causing Renal Tubular Acidosis Reveal a Role for Interaction with Phosphofructokinase-1. American Journal of Physiology-Renal Physiology, 295, F950-F958. https://doi.org/10.1152/ajprenal.90258.2008