菲啶酮(Phenanthridinone)和吖啶酮(Acridone)是两类重要的生物碱类化合物,广泛存在于许多活性天然产物骨架中。本文综述了近年来菲啶酮和吖啶酮类天然产物在合成和生物活性方面的最新研究进展。首先,重点介绍了菲啶酮和吖啶酮类天然产物的生物活性,包括抗氧化、抗炎、抗肿瘤、抗菌和抗病毒等方面的活性,并对其作用机制进行了阐述。然后,介绍了菲啶酮和吖啶酮类天然产物的化学结构和分类,然后总结了它们的合成方法,包括传统的合成方法、新型的绿色合成方法以及催化下的合成方法。最后,指出了当前研究中存在的问题和未来的发展方向,为相关领域的研究提供了参考。 Phenanthridinone and acridone are two important alkaloids that are widely present in many active natural product frameworks. In this paper, the recent advances in the synthesis and bioactivity of phenanthridone and acridone natural products were reviewed. Firstly, the biological activities of phenridone and acridone natural products, including antioxidant, anti-inflammatory, anti-tumor, antibacterial and antiviral activities, were introduced, and their mechanisms of action were described. Then, the chemical structure and classification of phenanthridone and acridone natural products were introduced, and their synthesis methods were summarized, including traditional synthesis methods, new green synthesis methods and catalytic synthesis methods. Finally, it points out the existing problems in the current research and the future development direction, and provides a reference for the research in related fields.
Phenanthridinone and acridone are two important alkaloids that are widely present in many active natural product frameworks. In this paper, the recent advances in the synthesis and bioactivity of phenanthridone and acridone natural products were reviewed. Firstly, the biological activities of phenridone and acridone natural products, including antioxidant, anti-inflammatory, anti-tumor, antibacterial and antiviral activities, were introduced, and their mechanisms of action were described. Then, the chemical structure and classification of phenanthridone and acridone natural products were introduced, and their synthesis methods were summarized, including traditional synthesis methods, new green synthesis methods and catalytic synthesis methods. Finally, it points out the existing problems in the current research and the future development direction, and provides a reference for the research in related fields.
马钰栋,张文渊. 菲啶酮和吖啶酮类天然产物合成及生物活性研究进展Synthesis and Biological Activity Research Progress of Phenanthridinone and Quinolinone Natural Products[J]. 药物化学, 2024, 12(02): 101-117. https://doi.org/10.12677/hjmce.2024.122013
参考文献References
徐智, 吴德玲, 张伟, 等. 生物碱类化合物的研究进展[J]. 广东化工, 2014, 41(17): 84-85, 108.
周贤春, 何春霞, 苏力坦∙阿巴白克力. 生物碱的研究进展[J]. 生物技术通讯, 2006, 17(3): 476-479.
Škubník, J., Pavlíčková, V.S., Ruml, T. and Rimpelová, S. (2021) Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. Biology, 10, Article 849. https://doi.org/10.3390/biology10090849
Shukla, R., Singh, A., and Singh, K.K. (2023) Vincristine-Based Nanoformulations: A Preclinical and Clinical Studies Overview. Drug Delivery and Translational Research, 14, 1-16. https://doi.org/10.1007/s13346-023-01389-6
Goel, A. (2023) Current Understanding and Future Prospects on Berberine for Anticancer Therapy. Chemical Biology & Drug Design, 102, 177-200. https://doi.org/10.1111/cbdd.14231
黄荣彩, 唐海沁, 蒋品, 等. 复方利血平氨苯蝶啶片治疗原发性高血压的Meta分析[J]. 中国临床保健杂志, 2018, 21(2): 214-217.
Weir, M.R. (2020) Reserpine: A New Consideration of an Old Drug for Refractory Hypertension. American Journal of Hypertension, 33, 708-710. https://doi.org/10.1093/ajh/hpaa069
Beteck, R.M., Smit, F.J., Haynes, R.K. and N’Da, D.D. (2014) Recent Progress in the Development of Anti-Malarial Quinolones. Malaria Journal, 13, Article No. 339. https://doi.org/10.1186/1475-2875-13-339
Dennis, G.S. (2016) Historical Review: Problematic Malaria Prophylaxis with Quinine. The American Journal of Tropical Medicine and Hygiene, 95, 269-272. https://doi.org/10.4269/ajtmh.16-0138
张加洋. 石松生物碱Lyconadins A-E和羽扇豆生物碱Hosieines A-D的全合成研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2021.
郭华, 兰玮妃, 黄丹蓉, 等. 新型生物碱提取分离研究进展[J]. 中央民族大学学报(自然科学版), 2021, 30(1): 74-81.
张德华, 李茹, 王永梅, 等. 生物碱的分类和鉴定方法研究进展[J]. 皖西学院学报, 2010, 26(5): 69-73.
杜硕. Epidithiodiketopiperazines类生物碱Epicoccin G与石蒜科生物碱( )-γ-Lycorane的全合成研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2018.
Zhong, J. (2005) Amaryllidaceae and Sceletium Alkaloids. Natural Product Reports, 22, 111-126. https://doi.org/10.1039/b316106b
Monzoni, A., Masutti, F., Saccoccio, G., et al. (2001) Genetic Determinants of Ethanol-Induced Liver Damage. Molecular Medicine, 7, 255-262. https://doi.org/10.1007/BF03401845
Ruchelman, A.L., Houghton, P.J., Zhou, N., et al. (2005) 5-(2-Aminoethyl) dibenzo [c,h][1,6]naphthyridin-6-ones: Variation of N-Alkyl Substituents Modulates Sensitivity to Efflux Transporters Associated with Multidrug Resistance. Journal of Medicinal Chemistry, 48, 792-804. https://doi.org/10.1021/jm049447z
张丽慧, 田秋月, 夏俊丽, 等. 吖啶酮类化合物的研究概况[J]. 辽宁化工, 2017, 46(2): 180-181.
Nguyen, Q.C., Nguyen, T.T., Yougnia, R., Gaslonde, T., Dufat, H., Michel, S. and Tillequin, F. (2009) Acronycine Derivatives: A Promising Series of Anti-Cancer Agents. Anti-Cancer agents in Medicinal Chemistry, 9, 804-815. https://doi.org/10.2174/187152009789056921
Banerjee, J., Kundu, I., Zhang, S., et al. (2019) Synthesis and Preliminary Biophysical and Cellular Evaluation of Some Ring-Enlarged Analogues of the Anti-Tumor Plant Alkaloid Acronycine. ACS Omega, 4, 6106-6113. https://doi.org/10.1021/acsomega.8b03673
Wu, Y.C., Yen, W.Y., Ho, H.Y., Su, T.L. and Yih, L.H. (2010) Glyfoline Induces Mitotic Catastrophe and Apoptosis in Cancer Cells. International Journal of Cancer, 126, 1017-1028. https://doi.org/10.1002/ijc.24841
Lee, Y., Chiou, J., Wang, L., Chen, Y. and Chang, L. (2023) Amsacrine Downregulates BCL2L1 Expression and Triggers Apoptosis in Human Chronic Myeloid Leukemia Cells through the SIDT2/NOX4/ERK/HuR Pathway. Toxicology and Applied Pharmacology, 474, Article 116625. https://doi.org/10.1016/j.taap.2023.116625
Assali M., Zaid, A.N., Abdallah, F., et al. (2017) Single-Walled Carbon Nanotubes-Ciprofloxacin Nanoantibiotic: Strategy to Improve Ciprofloxacin Antibacterial Activity. International Journal of Nanomedicine, 12, 6647-6659. https://doi.org/10.2147/IJN.S140625
Pettit, G.R., Meng, Y., Herald, D.L., Knight, J.C. and Day, J.F. (2005) Antineoplastic Agents. 553. The Texas Grasshopper Brachystola magna. Journal of Natural Products, 68, 1256-1258. https://doi.org/10.1021/np0402367
Pettit, G.R., Eastham, S.A., Melody, N., et al. (2006) Isolation and Structural Modification of 7-Deoxynarciclasine and 7-Deoxy-trans-Dihydronarciclasine. Journal of Natural Products, 69, 7-13. https://doi.org/10.1021/np058068l
Lee, S., Hwang, S., Yu, S., Jang, W., Lee, Y.M. and Kim, S. (2011) Synthesis and Evaluation of C-Ring Aromatized Analogues of Phenanthridone Alkaloids. Archives of Pharmacal Research, 34, 1065-1070. https://doi.org/10.1007/s12272-011-0703-1
Zhang, S., Zhang, S., Wang, Y., Zhang, Y., Liang, S., Fan, S., Chen, D. and Liu, G. (2023) Discovery of Novel Phenanthridone Derivatives with Anti-Streptococcal Activity. Archives of Microbiology, 205, Article No. 371. https://doi.org/10.1007/s00203-023-03705-7
Wahlberg, E., Karlberg, T., Kouznetsova, E., Markova, N., Macchiarulo, A., Thorsell, A.G., Pol, E., Frostell, Å., Ekblad, T., Öncü, D., Kull, B., Robertson, G.M., Pellicciari, R., Schüler, H. and Weigelt, J. (2012) Family-Wide Chemical Profiling and Structural Analysis of PARP and Tankyrase Inhibitors. Nature Biotechnology, 30, 283-288. https://doi.org/10.1038/nbt.2121
Bondar, D., Bragina, O., Lee, J.Y., Semenyuta, I., Järving, I., Brovarets, V., Wipf, P., Bahar, I. and Karpichev, Y.A. (2023) Hydroxamic Acids as PARP-1 Inhibitors: Molecular Design and Anticancer Activity of Novel Phenanthridinones. Helvetica ChimicaActa, 106, e202300133. https://doi.org/10.1002/hlca.202300133
Nair, J.J. and Staden, V.J. (2018) Phenanthridone Alkaloids of the Amaryllidaceae as Activators of the Apoptosis-Related Proteolytic Enzymes, Caspases. Natural Product Communications, 13, 1375-1380. https://doi.org/10.1177/1934578X1801301035
Alexander, K. and Antonio, E. (2008) Chemistry, Biology, and Medicinal Potential of Narciclasine and Its Congeners. Chemical Reviews, 108, 1982-2014. https://doi.org/10.1021/cr078198u
Patil, S., Kamath, S., Sanchez, T., Neamati, N., Schinazi, R.F. and Buolamwini, J.K. (2007) Synthesis and Biological Evaluation of Novel 5(H)-Phenanthridin-6-Ones, 5(H)-Phenanthridin-6-One Diketo Acid, and Polycyclic Aromatic Diketo Acid Analogs as New HIV-1 Integrase Inhibitors. Bioorganic & Medicinal Chemistry, 15, 1212-1228. https://doi.org/10.1016/j.bmc.2006.11.026
Nakamura, M., Aoyama, A., Salim, T.M., et al. (2010) Structural Development Studies of Anti-Hepatitis C Virus Agents with a Phenanthridinone Skeleton. Bioorganic Medicinal Chemistry, 18, 2402-2411. https://doi.org/10.1016/j.bmc.2010.02.057
Akpan, E.D., Dagdag, O. and Ebenso, E.E. (2022) Recent Progress on the Anticorrosion Activities of Acridine and Acridone Derivatives: A Review. Journal of Molecular Liquids, 361, Article 119686. https://doi.org/10.1016/j.molliq.2022.119686
Alday, P.H., McConnell, E.V., Boitz Zarella, J.M., et al. (2021) Acridones Are Highly Potent Inhibitors of Toxoplasma gondii Tachyzoites. ACS Infectious Diseases, 7, 1877-1884. https://doi.org/10.1021/acsinfecdis.1c00016
Yadav, T.T., Murahari, M., Peters, G.J. and Mayur, Y.C. (2022) A Comprehensive Review on Acridone Based Derivatives as Future Anti-Cancer Agents and Their Structure Activity Relationships. European Journal of Medicinal Chemistry, 239, Article 114527. https://doi.org/10.1016/j.ejmech.2022.114527
Philippe, B., Johann, B., Thomas, G., et al. (2007) Acridine and Acridone Derivatives, Anticancer Properties and Synthetic Methods: Where Are We Now? Anti-Cancer Agents in Medicinal Chemistry, 7, 139-169. https://doi.org/10.2174/187152007780058669
Bayet, C., Fazio, C., Darbour, N., et al. (2007) Modulation of P-Glycoprotein Activity by Acridones and Coumarins from Citrus sinensis. Phytotherapy Research, 21, 386-390. https://doi.org/10.1002/ptr.2081
Joshi, P., Vishwakarma, A.R. and Bharate, B.S. (2017) Natural Alkaloids as P-gp Inhibitors for Multidrug Resistance Reversal in Cancer. European Journal of Medicinal Chemistry, 138, 273-292. https://doi.org/10.1016/j.ejmech.2017.06.047
Aonnicha, S., Yutthapong, T., Thurdpong, S., et al. (2018) New Limonophyllines A-C from the Stem of Atalantiamonophylla and Cytotoxicity against Cholangiocarcinoma and HepG2 Cell Lines. Archives of Pharmacal Research, 41, 431-437. https://doi.org/10.1007/s12272-018-1021-7
Thi, T.M.N., Hoang, P.D., Xuan, H.N., et al. (2020) Paratrimerin I, Cytotoxic Acridone Alkaloid from the Roots of Paramignyatrimera. Natural Product Research, 35, 5042-5047. https://doi.org/10.1080/14786419.2020.1774760
Woodroofe, C.C., Zhong, B., Lu, X. and Silverman, R.B. (2000) Anomalous Schmidt Reaction Products of Phenylacetic Acid and Derivatives. Journal of the Chemical Society-Perkin Transactions, 2, 55-59. https://doi.org/10.1039/a907337j
Banwell, M.G., Lupton, D.W., Ma, X., et al. (2004) Synthesis of Quinolines, 2-Quinolones, Phenanthridines, and 6(5H)-Phenanthridinones via Palladium [0]-Mediated Ullmann Cross-Coupling of 1-Bromo-2-Nitroarenes with Beta-Halo-enals,-enones, or-esters. Organic Letters, 16, 2741-2744. https://doi.org/10.1021/ol0490375
Guy, A., Guette, J.P. and Lang, G. (1980) Utilization of Polyphosphoric Acid in the Presence of a Co-solvent. Synthesis, 1980, 222-223. https://doi.org/10.1055/s-1980-28974
Guo, X., Xing, Q., Lei, K., et al. (2017) A Tandem Ring Opening/Closure Reaction in A BF3-Mediated Rearrangement of Spirooxindoles. Advanced Synthesis Catalysis, 359, 4393-4398. https://doi.org/10.1002/adsc.201700728
Corsaro, A., Librando, V., Chiacchio, U., Pistarà, V. and Rescifina, A. (1998) Cycloaddition of Nitrile Oxides to aza-Analogues of Phenanthrene. Tetrahedron, 54, 9187-9194. https://doi.org/10.1016/S0040-4020(98)00556-0
Gilman, H. and Eisch, J.J. (1957) The Chemistry and Synthetic Applications of the Phenanthridinone System. Journal of the American Chemical Society, 79, 5479-5483. https://doi.org/10.1021/ja01577a041
Sanz, R., et al. (2007) Functionalized Phenanthridine and Dibenzopyranone Derivatives through Benzyne Cyclization—Application to the Total Syntheses of Trisphaeridine and N-Methylcrinasiadine. European Journal of Organic Chemistry, 2007, 62-69. https://doi.org/10.1002/ejoc.200600621
Haridharan, R., et al. (2015) Rhodium (III)-Catalyzed ortho-Arylation of Anilides with Aryl Halides. Advanced Synthesis & Catalysis, 357, 366-370. https://doi.org/10.1002/adsc.201400798
Dao, P.D., Lim, H. and Cho, C.S. (2018) Weak Base-Promoted Lactamization under Microwave Irradiation: Synthesis of Quinolin-2(1H)-ones and Phenanthridin-6(5H)-ones. ACS Omega, 3, 12114-12121. https://doi.org/10.1021/acsomega.8b01742
Conde, N., Churruca, F., San Martin, R., et al. (2015) A Further Decrease in the Catalyst Loading for the Palladium-Catalyzed Direct Intramolecular Arylation of Amides and Sulfonamides. Advanced Synthesis Catalysis, 357, 1525-1531. https://doi.org/10.1002/adsc.201401129
Manikandan, T.S., Ramesh, R. and Sémeril, D. (2019) The Tandem C-H/N-H Activation of N-Methyl Arylamide Catalyzed by Dinuclear Pd (II) Benzhydrazone Complex: A Concise Access to Phenanthridinone. Organometallics, 38, 319-328. https://doi.org/10.1021/acs.organomet.8b00714
Ding, X., Zhang, L., Mao, Y., Rong, B., Zhu, N., Duan, J. and Guo, K. (2019) Synthesis of Phenanthridinones by Palladium-Catalyzed Cyclization of N-Aryl-2-Aminopyridines with 2-Iodobenzoic Acids in Water. Synlett, 31, 28-284. https://doi.org/10.1055/s-0039-1691538
Minghao, F., Bingqing, T., Nengzhong, W., et al. (2015) Ligand Controlled Regiodivergent C1 Insertion on Arynes for Construction of Phenanthridinone and Acridone Alkaloids. Angewandte Chemie, 54, 14960-14964. https://doi.org/10.1002/anie.201508340
Wen, J., Tang, S., Zhang, F., Shi, R. and Lei, A. (2017) Palladium/Copper Co-Catalyzed Oxidative C-H/C-H Carbonylation of Diphenylamines: A Way to Access Acridones. Organic Letters, 19, 94-97. https://doi.org/10.1021/acs.orglett.6b03356
Kancharla, P., Dodean, R.A., Li, Y. and Kelly, J.X. (2019) Boron Trifluoride Etherate Promoted Microwave-Assisted Synthesis of Antimalarial Acridones. RSC Advances, 9, 42284-42293. https://doi.org/10.1039/C9RA09478D
Tirtha, M., Shilpi, K., Ajoy, K., et al. (2021) Studies Directed towards the Synthesis of the Acridone Family of Natural Products: Total Synthesis of Acronycines and Atalaphyllidines. ACS Omega, 6, 27062-27069. https://doi.org/10.1021/acsomega.1c03629
Zhao, J. and Larock, R.C. (2007) Synthesis of Xanthones, Thioxanthones, and Acridones by the Coupling of Arynes and Substituted Benzoates.The Journal of Organic Chemistry, 72, 583-588. https://doi.org/10.1021/jo0620718
Fang, Y., Rogness, D.C., Larock, R.C. and Shi, F. (2012) Formation of Acridones by Ethylene Extrusion in the Reaction of Arynes with β-Lactams and Dihydroquinolinones. The Journal of Organic Chemistry, 77, 6262-6270. https://doi.org/10.1021/jo3011073
Liu, F., Si, M., Shi, X., Zhuang, S., Cai, Q., Liu, Y. and Wu, A. (2023) Base-Controlled Synthesis of Fluorescent Acridone Derivatives via Formal (4 2) Cycloaddition. The Journal of Organic Chemistry, 88, 3173-3184. https://doi.org/10.1021/acs.joc.2c02977