菊花是菊科菊属多年生草本植物,其具有很高的药用价值。含有多种化学活性成分,因此具有多种药理活性,主要有黄酮类、挥发油、苯丙素类、萜类、氨基酸等物质,其中黄酮类物质是菊花中的主要生物活性组分。现代药理实验中表明菊花具有多种功效,如抗氧化、抗炎、抗菌、抗癌等。本文对近些年关于黄酮类化合物中主要抗氧化化合物的抗氧化活性的研究进行探讨,梳理其抗氧化活性的研究进展,发掘其抗氧化活性方面存在的问题。本文还将探讨菊花中黄酮类化合物的抗氧化活性及其未来的研究展望,以便于开发菊花抗氧化活性的潜力。 Chrysanthemum is a perennial herb of the Asteraceae family which has a high medicinal value. It contains a variety of chemically active components and therefore has a wide range of pharmacological activities. Its main constituents are flavonoids, essential oils, phenylpropanoids, terpenoids and amino acids, of which flavonoids are the most important bioactive components in chrysanthemum. Modern pharmacological experiments have shown that Chrysanthemum has various effects such as antioxidant, anti-inflammatory, antibacterial and anticancer. This paper reviews the recent research on the antioxidant activity of flavonoids, a natural antioxidant, mainly including chlorogenic acid, baicalin, rutin, quercetin and other important antioxidant compounds, to sort out the progress of research on their antioxidant activity, uncover the problems in their antioxidant activity. This paper will also discuss the antioxidant activity of flavonoid compounds in chrysanthemums and the future research prospects, in order to develop the antioxidant potential of chrysanthemum. The study will review the progress of antioxidant activity of chrysanthemum and identify the problems of its antioxidant activity.
Received: Feb. 27th, 2024; accepted: Mar. 4th, 2024; published: May 9th, 2024
ABSTRACT
Chrysanthemum is a perennial herb of the Asteraceae family which has a high medicinal value. It contains a variety of chemically active components and therefore has a wide range of pharmacological activities. Its main constituents are flavonoids, essential oils, phenylpropanoids, terpenoids and amino acids, of which flavonoids are the most important bioactive components in chrysanthemum. Modern pharmacological experiments have shown that Chrysanthemum has various effects such as antioxidant, anti-inflammatory, antibacterial and anticancer. This paper reviews the recent research on the antioxidant activity of flavonoids, a natural antioxidant, mainly including chlorogenic acid, baicalin, rutin, quercetin and other important antioxidant compounds, to sort out the progress of research on their antioxidant activity, uncover the problems in their antioxidant activity. This paper will also discuss the antioxidant activity of flavonoid compounds in chrysanthemums and the future research prospects, in order to develop the antioxidant potential of chrysanthemum. The study will review the progress of antioxidant activity of chrysanthemum and identify the problems of its antioxidant activity.
潘戴晨,王紫薇,徐颂文,蒋细旺. 菊花黄酮类化合物抗氧化活性研究的现状、问题及展望The Current Status, Challenges, and Prospects of Research on the Antioxidant Activity of Flavonoids in Chrysanthemums[J]. 药物化学, 2024, 12(02): 87-95. https://doi.org/10.12677/hjmce.2024.122011
参考文献References
国家药典委员会. 中华人民共和国药典: 2010年版一部[S]. 北京: 中国医药科技出版社, 2010.
Akihisa, T., Yasukawa, K., Oinuma, H., Kasahara, Y., Yamanouchi, S., Takido, M., Kumaki, K. and Tamura, T. (1996) Triterpene Alcohols from the Flowers of Compositae and Their Anti-Inflammatory Effects, Phytochemistry, 43, 1255-1260. https://doi.org/10.1016/S0031-9422(96)00343-3
Ukiya, M., Akihisa, T., Yasukawa, K., Kasahara, Y., Kimura, Y., Koike, K., Nikaido, T. and Takido, M. (2001) Constituents of Compositae Plants. 2. Triterpene Diols, Triols, and Their 3O-Fatty Acid Esters from Edible Chrysanthemum Flower Extract and Their Anti-Inflammatory Effects, Journal of Agricultural and Food Chemistry, 49, 3187-3197. https://doi.org/10.1021/jf010164e
Ukiya, M., Akihisa, T., Tokuda, H., Suzuki, H., Mukainaka, T., Ichiishi, E., Yasukawa, K., Kasahara, Y. and Nishino, H. (2002) Constituents of Compositae Plants III. Anti-Tumor Promoting Effects and Cytotoxic Activity against Human Cancer Cell Lines of Triterpene Diols and Triols from Edible Chrysanthemum Flowers. Cancer Letters, 177, 7-12. https://doi.org/10.1016/S0304-3835(01)00769-8
Lee, J.S., Kim, H.J. and Lee, Y.S. (2003) A New Anti-HIV Flavonoid Glucuronide from Chrysanthemum morifolium. Planta Medica, 69, 859-861. https://doi.org/10.1055/s-2003-43207
Chen, Z.J., Kong, S.S., Song, F.F., Li, L.P. and Jiang, H.D. (2012) Pharmacokinetic Study of Luteolin, Apigenin, Chrysoeriol and Diosmetin after Oral Administration of Flos Chrysanthemi Extract in Rats. Fitoterapia, 83, 1616-1622. https://doi.org/10.1016/j.fitote.2012.09.011
曹双, 刘瑞, 张秋月, 等. 野菊花化学成分和药理作用研究进展[J]. 广东化工, 2023, 50(3): 203-204 198.
Kim, H.J. and Lee, Y.S. (2005) Identification of New Dicaffeoylquinic Acids from Chrysanthemum morifolium and Their Antioxidant Activities. Planta Medica, 71, 871-876. https://doi.org/10.1055/s-2005-873115
Zheng, C.P., Dong, Q., Chen, H.J., Cong, Q.F. and Ding, K. (2015) Structural Characterization of a Polysaccharide from Chrysanthemum morifolium Flowers and Its Antioxidant Activity. Carbohydrate Polymers, 130, 113-121. https://doi.org/10.1016/j.carbpol.2015.05.004
Duh, P.D. (1999) Antioxidant Activity of Water Extract of Four Harng Jyur (Chrysanthemum morifolium Ramat) Varieties in Soybean Oil Emulsion. Food Chemistry, 66, 471-476. https://doi.org/10.1016/S0308-8146(99)00081-3
Miyake, Y., Shimoi, K., Kumazawa, S., Yamamoto, K., Kinae, N. and Osawa, T. (2000) Identification and Antioxidant Activity of Flavonoid Metabolites in Plasma and Urine of Erocitrin-Treated Rats. Journal of Agricultural and Food Chemistry, 48, 3217-3224. https://doi.org/10.1021/jf990994g
Fearon, E.R. and Vogelstein, B. (1990) A Genetic Model for Colorectal Tumorigenesis. Cell, 61, 759-767. https://doi.org/10.1016/0092-8674(90)90186-I
Hosseinzadeh, A., Kamrava, S.K., Joghataei, M.T., Darabi, R., Shakeri-Zadeh, A., Shahriari, M., Reiter, R., Ghaznavi, H. and Mehrzadi, S. (2016) Apoptosis Signaling Pathways in Osteoarthritis and Possible Protective Role of Melatonin. Journal of Pineal Research, 61, 411-425. https://doi.org/10.1111/jpi.12362
侯冬岩, 回瑞华, 刘晓媛, 唐蕊. 万寿菊花、叶、茎中黄酮的含量及抗氧化性能的分析[J]. 鞍山师范学院学报, 2008(4): 15-18.
贺志荣, 皇甫阳鑫, 刘乐, 赵二劳. 菊花抗氧化活性研究进展[J]. 绿色科技, 2019(2): 128-130.
丁利君, 吴振辉, 蔡创海, 黄晓珊. 菊花中黄酮类物质提取方法的研究[J]. 食品工业科技, 2002(2): 20-22.
周衡朴, 任敏霞, 管家齐, 等. 菊花化学成分、药理作用的研究进展及质量标志物预测分析[J]. 中草药, 2019, 50(19): 4785-4795.
白海玉, 刘宝忠, 霍金海. 基于液质联用技术的野菊花中黄酮成分分析[J]. 中国中医药科技, 2018, 25(6): 826-830.
Hu, J., Ma, W., Li, N. and Wang, K.J. (2018) Antioxidant and Anti-Inflammatory Flavonoids from the Flowers of Chuju, a Medical Cultivar of Chrysanthemum Morifolim Ramat. Journal of the Mexican Chemical Society, 61, 282-289. https://doi.org/10.29356/jmcs.v61i4.458
Yang, L., Cheng, P., Wang, J.H. and Li, H. (2017) Analysis of Floral Volatile Components and Antioxidant Activity of Different Varieties of Chrysanthemum morifolium. Molecules, 22, Article No. 1790. https://doi.org/10.3390/molecules22101790
Li, Y., Yang, P., Luo, Y., et al. (2019) Chemical Compositions of Chrysanthemum Teas and Their Anti-Inflammatory and Antioxidant Properties. Food Chemistry, 286, 8-16. https://doi.org/10.1016/j.foodchem.2019.02.013
雷康藤, 龙娟娟, 杨琳妹, 张毛毛, 钮谷雨, 张培. 菊花黄酮化合物组成、抗氧化活性及相关性分析[J]. 山东化工, 2020, 49(1): 53-55.
张艳, 严晓波, 姚秋萍, 卫亚丽. 绿原酸的提取分离及其在食品中的应用[J]. 现代食品, 2021(17): 19-22.
Naqvi, S.A.Z., Irfan, A., Zahoor, A.F., et al. (2020) Determination of Antimicrobial and Antioxidant Potential of Agro-Waste Peels. Anais da Academia Brasileira de Ciências, 92, e20181103. https://doi.org/10.1590/0001-3765202020181103
Cao, X., Islam, M., Chitrakar, B., Duan, Z., Xu, W. and Zhong, S. (2020) Effect of Combined Chlorogenic Acid and Chitosan Coating on Antioxidant, Antimicrobial, and Sensory Properties of Snakehead Fish in Cold Storage. Food Science & Nutrition, 8, 973-981. https://doi.org/10.1002/fsn3.1378
王荣, 宋闯, 陈庆庆, 等. 丹皮酚、绿原酸和没食子酸复配物对D-半乳糖致小鼠衰老模型的抗氧化作用研究[J]. 陕西中医药大学学报, 2023, 46(2): 95-99.
Sato, Y., Itagaki, S., Kurokawa, T., et al. (2011) In Vitro and in Vivo Antioxidant Properties of Chlorogenic Acid and Caeic Acid. International Journal of Pharmaceutics, 403, 136-138. https://doi.org/10.1016/j.ijpharm.2010.09.035
Kono, Y., Kobayashi, K., Tagawa, S., et al. (1997) Antioxidant Activity of Polyphenolics in Diets. Rate Constants of Reactions of Chlorogenic Acid and Caffeic Acid with Reactive Species of Oxygen and Nitrogen. Biochimica et Biophysica Acta, 1335, 335-342. https://doi.org/10.1016/S0304-4165(96)00151-1
Wang, L. and Qiang, M.A. (2018) Clinical Benefits and Pharmacology of Scutellarin: A Comprehensive Review. Pharmacology and Therapeutics, 190, 105-127. https://doi.org/10.1016/j.pharmthera.2018.05.006
何芬莉, 李康乐, 尚荣国, 等. 高效液相色谱法同时测定康痔栓中黄芩苷和蒙花苷两种成分[J]. 西部中医药, 2020, 33(3): 42-44.
李会婷, 史天陆, 付恩桃, 等. RP-HPLC 法同时测定咽炎片中黄芩苷和丹皮酚的含量[J]. 西部中医药, 2020, 33(1): 56-59.
吴宜艳, 韩杨, 李玲玉, 等. 黄芩苷通过抗氧化对H2O2诱导的SH-SY5Y细胞损伤的保护作用[J]. 中国医药导报, 2018, 15(27): 8-11.
Yu, F., Xu, N., Zhou, Y., et al. (2019) Anti-Inflammatory Effect of Paeoniflorin Combined with Baicalin in Oral Inflammatory Diseases. Oral Disease, 25, 1945-1953. https://doi.org/10.1111/odi.13171
Mengyun, K., Zhang, Z.H., Xu, B.Y., et al. (2019) Baicalein and Baicalin Promote Antitumor Immunity by Suppressing PD-L1 Expression in Hepatocellular Carcinoma. International Immunopharmacology, 75, Article ID: 105824. https://doi.org/10.1016/j.intimp.2019.105824
卫盼莹. 黄芩苷在体外抗H9N2亚型禽流感病毒的机理初探[D]: [硕士学位论文]. 北京: 北京农学院, 2018.
娄飞, 张勇, 邓旭明, 等. 野黄芩苷抗肠出血大肠杆菌感染作用[J]. 中国兽医学报, 2019, 39(3): 482-485, 492.
赛佳洋. 双辛鼻鼽散及其活性成分黄芩苷治疗过敏性鼻炎的药效学及机制探讨[D]: [博士学位论文]. 北京: 北京中医药大学, 2017.
严宝飞. 黄芩茎叶资源化学与新资源药材质量评价研究[D]: [硕士学位论文]. 南京: 南京中医药大学, 2018.
Zhang, J.A., Yi, N.Z., Mal, W., et al. (2014) The Protective Effect of Baicalin against UVB Irradiation Induced Photoaging: An in Vitro and in Vivo Study. PLOS ONE, 9, e99703. https://doi.org/10.1371/journal.pone.0099703
Paudel, K.R. and Kim, D.W. (2020) Microparticles-Mediated Vascular Inflammation and Its Amelioration by Antioxidant Activity of Baicalin. Antioxidants, 9, Article No. 890. https://doi.org/10.3390/antiox9090890
Zeng, N., Zhang, G., Hu, X., Pan, J., Zhou, Z. and Gong, D. (2018) Inhibition Mechanism of Baicalein and Baicalin on Xanthine Oxidase and Their Synergistic Effect with Allopurinol. Journal of Functional Foods, 50, 172-182. https://doi.org/10.1016/j.jff.2018.10.005
刘海霞. 黄芩苷对早期糖尿病肾病肾功能及其抗氧化应激作用的影响[J]. 中国现代药物应用, 2013, 7(20): 142-143.
Shi, L., Hao, Z.X., Zhang, S.B., et al. (2018) Baicalein and Baicalin Alleviate Acetaminophen-Induced Liver Injury by Activating Nrf2 Antioxidative Pathway: The Involvement of ERK1/2 and PKC. Biochemical Pharmacology, 150, 9-23. https://doi.org/10.1016/j.bcp.2018.01.026
孙琎. 黄芩苷元调控高糖诱导肝脏氧化应激的机制[D]: [硕士学位论文]. 大连: 大连理工大学, 2018.
石艳宾, 鲍佳彤, 王亦萱, 李文静. 金银花绿原酸与芦丁、槲皮素协同抗氧化作用[J]. 食品工业, 2020, 41(5): 199-202.
Fitzpatrick, D.F., Hirschfield, S.L. and Coffey, R.G. (1993) Endothelium-Dependent Vasorelaxing Activity of Wine and Other Grape Products. The American Journal of Physiology-Heart and Circulatory Physiology, 265, H774-H778. https://doi.org/10.1152/ajpheart.1993.265.2.H774
孔琪, 吴春. 菊花黄酮的提取及抗氧化活性研究[J]. 中草药, 2004, 35(9): 1001-1002.
Kim, H.J. and Lee, Y.S. (2005) Identification of New Dicaffeoylquinic Acids from Chrysanthemum morifolium and Their Antioxidant Activities. Planta Medica, 71, 871-876. https://doi.org/10.1055/s-2005-873115
金芳多. 黄酮类化合物对肝细胞氧化损伤的保护作用研究进展[J]. 吉林医药学院学报, 2022, 43(3): 222-225.
贾冬英, 周有祥. 植物功能性食品在促进健康和预防疾病中的作用[J]. 广州食品工业科技, 2000(3): 55-57 62.
游庭活, 温露, 刘凡. 衰老机制及延缓衰老活性物质研究进展[J]. 天然产物研究与开发, 2015, 27(11): 1985-1990.
路晓庆, 杨芮, 李炘正, 李卓玉, 王伏生, 张桓虎. 黄酮类物质的生物功能及作用机制研究进展[J]. 中西医结合心脑血管病杂志, 2018, 16(22): 3283-3286.
Chen, S., Liu, J., Dong, G., et al. (2021) Flavonoids and Caffeoylquinic Acids in Chrysanthemum morifolium Ramat Flowers: A Potentially Rich Source of Bioactive Compounds. Food Chemistry, 344, Article ID: 128733. https://doi.org/10.1016/j.foodchem.2020.128733
Spigno, G., Tramelli, L. and De Faveri, D.M. (2007) Effects of Extraction Time, Temperature and Solvent on Concentration and Antioxidant Activity of Grape Marc Phenolics. Journal of Food Engineering, 81, 200-208. https://doi.org/10.1016/j.jfoodeng.2006.10.021
Li, H., Gilbert, R.G. and Gidley, M.J. (2021) Molecular-Structure Evolution during in Vitro Fermentation of Granular High-Amylose Wheat Starch Is Different to in Vitro Digestion. Food Chemistry, 362, Article ID: 130188. https://doi.org/10.1016/j.foodchem.2021.130188