饮水安全是人类健康和生命安全的基本保障,随着水质指标的提高和新污染物的发现,饮用水处理面临着新的挑战。臭氧微纳米气泡技术作为一种高效、环保、安全的水处理方法,在饮用水处理方面体现出了广阔的前景。本文对传统臭氧氧化技术的原理及缺点进行了剖析,阐述了臭氧微纳米气泡的特征及优势,总结了臭氧微纳米气泡及其联用技术对于饮用水中主要指标处理的研究进展,就不足之处和研究方向提出未来展望。 Drinking water safety is the basic guarantee for human health and life safety. With the improvement of water quality indicators and the discovery of new pollutants, drinking water treatment is facing new challenges. Ozone micro-nano-bubble technology, as an efficient, environmentally friendly and safe water treatment method, embodies a broad prospect in drinking water treatment. This paper analyzes the principle and shortcomings of traditional ozone oxidation technology, describes the characteristics and advantages of ozone micro and nano bubbles, summarizes the research progress of ozone micro and nano bubbles and their combined technology for the treatment of the main indicators in drinking water, and puts forward the future outlook of the shortcomings and research direction.
饮用水处理,臭氧微纳米气泡, Drinking Water Treatment
Ozone Micro-Nano Bubble
摘要
Research Progress of Ozone Micro-Nano Bubbles and Their Combined Technology in Drinking Water Treatment
Ken Lin
College of Environment, Hohai University, Nanjing Jiangsu
Received: Mar. 5th, 2024; accepted: Mar. 30th, 2024; published: Apr. 30th, 2024
ABSTRACT
Drinking water safety is the basic guarantee for human health and life safety. With the improvement of water quality indicators and the discovery of new pollutants, drinking water treatment is facing new challenges. Ozone micro-nano-bubble technology, as an efficient, environmentally friendly and safe water treatment method, embodies a broad prospect in drinking water treatment. This paper analyzes the principle and shortcomings of traditional ozone oxidation technology, describes the characteristics and advantages of ozone micro and nano bubbles, summarizes the research progress of ozone micro and nano bubbles and their combined technology for the treatment of the main indicators in drinking water, and puts forward the future outlook of the shortcomings and research direction.
Keywords:Drinking Water Treatment, Ozone Micro-Nano Bubble
林 肯. 臭氧微纳米气泡及其联用技术对饮用水处理的研究进展Research Progress of Ozone Micro-Nano Bubbles and Their Combined Technology in Drinking Water Treatment[J]. 环境保护前沿, 2024, 14(02): 388-394. https://doi.org/10.12677/aep.2024.142053
参考文献References
侯立安, 张雅琴, 张林. 饮用水源新污染物防控发展方向的思考[J]. 给水排水, 2022, 48(4): 1-5.
Sonntag, C.V. and Gunten, U.V. (2012) Chemistry of Ozone in Water and Wastewater Treatment. IWA Publishing, London. https://doi.org/10.2166/9781780400839
Tomiyasu, H., Fukutomi, H. and Gordon, G. (1985) Kinetics and Mechanism of Ozone Decomposition in Basic Aqueous Solution. Inorganic Chemistry, 24, 2962-2966. https://doi.org/10.1021/ic00213a018
秦月娇, 焦纬洲, 杨鹏飞, 等. 强化臭氧传质的研究进展[J]. 过程工程学报, 2017, 17(2): 420-426.
马艳, 张鑫, 韩小蒙, 等. 臭氧微纳米气泡技术在水处理中的应用进展[J]. 净水技术, 2019, 38(8): 64-67.
Wang, W., Fan, W., Huo, M., Zhao, H. and Lu, Y. (2018) Hydroxyl Radical Generation and Contaminant Removal from Water by the Collapse of Microbubbles under Different Hydrochemical Conditions. Water Air & Soil Pollution, 229, Article NO. 86. https://doi.org/10.1007/s11270-018-3745-x
丁路明, 王兴林, 于海洋, 等. 臭氧微纳米气泡特性及在水处理中的研究[C]//中国环境科学学会环境工程分会. 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(四). 2021: 5. https://doi.org/10.26914/c.cnkihy.2021.028285
Fan, W., An, W.G., Huo, M.X., Yang, W., Zhu, S.Y., and Lin, S.S. (2019) Solubilization and Stabilization for Prolonged Reactivity of Ozone Using Micro-Nano Bubbles and Ozone-Saturated Solvent: A Promising Enhancement for Ozonation. Separation and Purification Technology, 238, Article 116484. https://doi.org/10.1016/j.seppur.2019.116484
代朝猛, 张峻博, 段艳平, 等. 微纳米气泡特性及在环境水体修复中的应用[J]. 同济大学学报(自然科学版), 2022, 50(3): 431-438.
杨丽, 廖传华, 朱跃钊, 等. 微纳米气泡特性及在环境污染控制中的应用[J]. 化工进展, 2012, 31(6): 1333-1337.
王兴林. 臭氧微纳米气泡降解饮用水中典型嗅味物质的效能与机理研究[D]: [硕士学位论文]. 济南: 山东建筑大学, 2023.
姬秋雨. 微纳米气泡修复技术处理地下水重金属污染实验研究[D]: [硕士学位论文]. 重庆: 重庆交通大学, 2022.
Verinda, S.B., Muniroh, M., Yulianto, E., Maharani, N., Gunawan, G., Amalia, N.F., et al. (2022) Degradation of Ciprofloxacin in Aqueous Solution Using Ozone Microbubbles: Spectroscopic, Kinetics, and Antibacterial Analysis. Heliyon, 8, e10137. https://doi.org/10.2139/ssrn.4063627
Zhang, J., Lv, S., Yu, Q., Liu, C., Ma, J., et al. (2023) Degradation of Sulfamethoxazole in Microbubble Ozonation Process: Performance, Reaction Mechanism and Toxicity Assessment. Separation and Purification Technology, 311, Article 123262. https://doi.org/10.1016/j.seppur.2023.123262
Jabesa, A. and Ghosh, P. (2022) Oxidation of Bisphenol-A by Ozone Microbubbles: Effects of Operational Parameters and Kinetics Study. Environmental Technology & Innovation, 26, Article 102271. https://doi.org/10.1016/j.eti.2022.102271
吕佳, 岳银玲, 张岚. 国内外饮用水消毒技术应用与优化研究进展[J]. 中国公共卫生, 2017, 33(3): 428-432.
贾新发. 饮用水消毒技术的应用与发展[J]. 山西建筑, 2013, 39(25): 119-120.
Batagoda, J.H., Hewage, S.D.A. and Meegoda, J.N. (2018) Nano-Ozone Bubbles for Drinking Water Treatment. Journal of Environmental Engineering and Science, 14, 57-66. https://doi.org/10.1680/jenes.18.00015
Seridou, P. and Kalogerakis, N. (2021) Disinfection Applications of Ozone Micro-and Nanobubbles. Environmental Science: Nano, 8, 3493-3510. https://doi.org/10.1039/D1EN00700A
Epelle, E.I., Emmerson, A., Nekrasova, M., Macfarlane, A., Cusack, M., et al. (2022) Microbial Inactivation: Gaseous or Aqueous Ozonation? Industrial & Engineering Chemistry Research, 61, 9600-9610. https://doi.org/10.1021/acs.iecr.2c01551
Sumikura, M., Hidaka, M., Murakami, H., Nobutomo, Y. and Murakami, T. (2007) Ozone Micro-Bubble Disinfection Method for Wastewater Reuse System. Water Science and Technology, 56, 53-61. https://doi.org/10.2166/wst.2007.556
Czapski, G., Lymar, S.V. and Schwarz, H.A. (1999) Acidity of the Carbonate Radical. The Journal of Physical Chemistry A, 103, 3447-3450. https://doi.org/10.1021/jp984769y
邢思初, 隋铭皓, 朱春艳. 臭氧氧化水中有机污染物作用规律及动力学研究方法[J]. 四川环境, 2010, 29(6): 112-117.
陈家斌, 周雪飞, 张亚雷. 水环境中PPCPs的臭氧氧化和高级氧化技术[J]. 给水排水, 2009, 35(z2): 85-90.
Zhang, Y., Ji, H., Liu, W., Wang, Z., Song, Z., Wang, Y., et al. (2020) Synchronous Degradation of Aqueous Benzotriazole and Bromate Reduction in Catalytic Ozonation: Effect of Matrix Factor, Degradation Mechanism and Application Strategy in Water Treatment. Science of the Total Environment, 727, Article 138696. https://doi.org/10.1016/j.scitotenv.2020.138696
陈李玉. 臭氧微纳气泡耦合紫外光强化处理水中阿特拉津的效能[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2022.
Tian, S.Q., Qi, J.Y., Wang, Y.P., Liu, Y.L., Wang, L. and Ma, J. (2021) Heterogeneous Catalytic Ozonation of Atrazine with Mn-Loaded and Fe-Loaded Biochar. Water Research, 193, Article 116860. https://doi.org/10.1016/j.watres.2021.116860
Song, Z., Zhang, Y., Liu, C., Xu, B., Qi, F., Yuan, D. and Pu, S. (2019) Insight into ·OH and O2·− Formation in Heterogeneous Catalytic Ozonation by Delocalized Electrons and Surface Oxygen-Containing Functional Groups in Layered-Structure Nanocarbons. Chemical Engineering Journal, 357, 655-666. https://doi.org/10.1016/j.cej.2018.09.182
Wu, C., Liu, X., Wu, X., Dong, F., Xu, J. and Zheng, Y. (2019) Sorption, Degradation and Bioavailability of Oxyfluorfen in Biochar-Amended Soils. Science of the Total Environment, 658, 87-94. https://doi.org/10.1016/j.scitotenv.2018.12.059
Zhu, X., Wang, B., Kang, J., Shen, J., Yan, P., Li, X., et al. (2022) Interfacial Mechanism of the Synergy of Biochar Adsorption and Catalytic Ozone Micro-Nano-Bubbles for the Removal of 2,4-Dichlorophenoxyacetic Acid in Water. Separation and Purification Technology, 299, Article 121777. https://doi.org/10.1016/j.seppur.2022.121777