目的:利用网络药理学去探究鱼腥草治疗急性肺损伤的作用机制。方法:首先,通过TCMSP、Swisws Target Prediction数据库查找鱼腥草的有效成分,并利用Uniport数据库将有效成分转化为基因靶点;然后通过GeneCards、OMIM、DisGeNET数据库获取急性肺损伤疾病的靶点,再将两者基因相交,筛选得到共同的基因靶点,并用Venny绘图,再使用Cytoscape去构建中药–疾病–成分–靶点的网络图,并从STRING数据库分析并筛选获得相同靶点蛋白–蛋白相互作用(PPI)网络图,利用Cytoscape软件分析绘制PPI网络图,运用cytoHubba的Degree算法,筛选关键基因靶点,建立关键基因靶点的网络模型。同时,使用微生信在线平台去进行富集分析,分析潜在靶点的基因功能以及信号通路,从而从系统生物学整体水平揭示鱼腥草潜在有效成分和作用机制。结果:结果分为三部分:成分、靶点和途径。在成分方面,发现鱼腥草的5种活性成分,其中槲皮素、山奈酚是主要活性成分。共发现132个靶点,其中128个主要靶点和ALI共同拥有。此外,鱼腥草治疗ALI的主要通路是Pathways in cancer信号通路、Lipid and atherosclerosis信号通路、AGE-RAGE信号通路等。结论:由于鱼腥草的多组分、多靶点和多通道功能,本研究通过网络药理学初步揭示了鱼腥草治疗ALI的潜在调节网络。为合理开发利用鱼腥草植物资源、保护和发展民族医药文化提供研究依据。 Objective: To explore the mechanism of Houttuynia cordata in treating acute lung injury using network pharmacology. Method: Firstly, search for the active ingredients of Houttuynia cordata using TCMSP and Swisws Target Prediction databases, and convert the active ingredients into gene targets using the Uniport database; Then, the targets of acute lung injury disease were obtained through GeneCards, OMIM, and DisGeNET databases. The two genes were intersected and screened to obtain common gene targets. Venny was used to draw the graph, and Cytoscape was used to construct the network diagram of traditional Chinese medicine disease component target. The protein protein interaction (PPI) network diagram of the same target was analyzed and screened from the STRING database. Cytoscape software was used to analyze and draw the PPI network diagram. CytoHubba’s Degree algorithm was used to screen key gene targets and establish the network model of key gene targets. At the same time, the online platform of Weishengxin is used for enrichment analysis, analyzing the gene functions and signaling pathways of potential targets, in order to reveal the potential effective ingredients and mechanisms of action of Houttuynia cordata from the perspective of systems biology as a whole. Result: The results are divided into three parts: components, targets, and pathways. In terms of ingredients, five active ingredients were found in Houttuynia cordata, among which quercetin and kaempferol are the main active ingredients. A total of 132 targets were discovered, of which 128 major targets are shared with ALI. In addition, the main pathways through which Houttuynia cordata treats ALI are the Pathways in Cancer signaling pathway, Lipid and Atherosclerosis signaling pathway, AGE-RAGE signaling pathway, etc. Conclusion: Due to the multi-component, multi-target, and multi-channel functions of Houttuynia cordata, this study preliminarily revealed the potential regulatory network of Houttuynia cordata in treating ALI through network pharmacology. To provide research basis for the rational development and utilization of Houttuynia cordata plant resources, as well as the protection and development of ethnic medical culture.
目的:利用网络药理学去探究鱼腥草治疗急性肺损伤的作用机制。方法:首先,通过TCMSP、Swisws Target Prediction数据库查找鱼腥草的有效成分,并利用Uniport数据库将有效成分转化为基因靶点;然后通过GeneCards、OMIM、DisGeNET数据库获取急性肺损伤疾病的靶点,再将两者基因相交,筛选得到共同的基因靶点,并用Venny绘图,再使用Cytoscape去构建中药–疾病–成分–靶点的网络图,并从STRING数据库分析并筛选获得相同靶点蛋白–蛋白相互作用(PPI)网络图,利用Cytoscape软件分析绘制PPI网络图,运用cytoHubba的Degree算法,筛选关键基因靶点,建立关键基因靶点的网络模型。同时,使用微生信在线平台去进行富集分析,分析潜在靶点的基因功能以及信号通路,从而从系统生物学整体水平揭示鱼腥草潜在有效成分和作用机制。结果:结果分为三部分:成分、靶点和途径。在成分方面,发现鱼腥草的5种活性成分,其中槲皮素、山奈酚是主要活性成分。共发现132个靶点,其中128个主要靶点和ALI共同拥有。此外,鱼腥草治疗ALI的主要通路是Pathways in cancer信号通路、Lipid and atherosclerosis信号通路、AGE-RAGE信号通路等。结论:由于鱼腥草的多组分、多靶点和多通道功能,本研究通过网络药理学初步揭示了鱼腥草治疗ALI的潜在调节网络。为合理开发利用鱼腥草植物资源、保护和发展民族医药文化提供研究依据。
网络药理学,鱼腥草,急性肺损伤,作用机制
Yifan Qi, Yan Li, Yongjie Tian, Shenglan Duan, Yihan Li
School of Medicine, Lijiang Culture and Tourism College, Lijiang Yunnan
Received: Nov. 22nd, 2023; accepted: Apr. 22nd, 2024; published: Apr. 30th, 2024
Objective: To explore the mechanism of Houttuynia cordata in treating acute lung injury using network pharmacology. Method: Firstly, search for the active ingredients of Houttuynia cordata using TCMSP and Swisws Target Prediction databases, and convert the active ingredients into gene targets using the Uniport database; Then, the targets of acute lung injury disease were obtained through GeneCards, OMIM, and DisGeNET databases. The two genes were intersected and screened to obtain common gene targets. Venny was used to draw the graph, and Cytoscape was used to construct the network diagram of traditional Chinese medicine disease component target. The protein protein interaction (PPI) network diagram of the same target was analyzed and screened from the STRING database. Cytoscape software was used to analyze and draw the PPI network diagram. CytoHubba’s Degree algorithm was used to screen key gene targets and establish the network model of key gene targets. At the same time, the online platform of Weishengxin is used for enrichment analysis, analyzing the gene functions and signaling pathways of potential targets, in order to reveal the potential effective ingredients and mechanisms of action of Houttuynia cordata from the perspective of systems biology as a whole. Result: The results are divided into three parts: components, targets, and pathways. In terms of ingredients, five active ingredients were found in Houttuynia cordata, among which quercetin and kaempferol are the main active ingredients. A total of 132 targets were discovered, of which 128 major targets are shared with ALI. In addition, the main pathways through which Houttuynia cordata treats ALI are the Pathways in Cancer signaling pathway, Lipid and Atherosclerosis signaling pathway, AGE-RAGE signaling pathway, etc. Conclusion: Due to the multi-component, multi-target, and multi-channel functions of Houttuynia cordata, this study preliminarily revealed the potential regulatory network of Houttuynia cordata in treating ALI through network pharmacology. To provide research basis for the rational development and utilization of Houttuynia cordata plant resources, as well as the protection and development of ethnic medical culture.
Keywords:Network Pharmacology, Houttuynia cordata, Acute Lung Injury, Mechanism of Action
Copyright © 2024 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
急性肺损伤是一种急性低氧性的呼吸功能不全的临床重症,当肺部损伤达到一定程度时,可能会出现急性呼吸窘迫综合征(ARDS) [
鱼腥草是三白草科的植物,是药食同源的常用药物。鱼腥草的性味主要是辛,微寒,归肺经;挥发油类及黄酮类成分是鱼腥草的主要成分 [
网络药理学主要从系统和生物网络的角度分析中医与疾病的关系。它被广泛用于发现中药中的有效活性成分,分析其整体机制,并帮助研究人员发现中药中一些联系规律,以及中药潜在的蛋白质靶点,从而为中药治疗和预防疾病的机制研究提供一些科学理论,并为中药寻找出新的适应症 [
在 TCMSP数据库平台(https://old.tcmsp-e.com/tcmsp.php)检索框中输入鱼腥草,鱼腥草的选择遵循药理学定律,选择检测条件,OB (口服生物利用度阈值)超过30%,DL (药物相似性阈值)超过0.18,通过选择条件的收集为有效成分,然后用UniProt蛋白质数据库(https://www.uniprot.org/)获得活性成分相对应的靶基因 [
通过OMIM在线《人类孟德尔遗传》(https://www.omim.org/)数据库、GeneCards人类基因的综合数据库(https://www.genecards.org/)数据库和Therapeutic Target Database靶点数据库(https://db.idrblab.net/ttd/)为工具,用关键词搜索方式,输入“急性肺损伤”来搜取相关疾病靶点 [
利用UniProt蛋白质数据库查询靶蛋白的基因名称,再通过Cytoscape软件,去绘制“中药–成分–靶点”网络图,从而分析化合物和靶点网络 [
使用在线软件Venny韦恩图的可视化构建(https://bioinfogp.cnb.csic.es/tools/venny/index.html)来绘制鱼腥草和ALI之间相互作用的目标,获得药物–疾病的共同目标靶点,并提取数据,输入在String蛋白质相互作用数据库(https://cn.string-db.org/)上,计算蛋白质网络相互作用,建立出PPI网络图,并导出获得的数据,通过Cytohubba插件在Cytoscape程序中分配的所有基因组分算法网络拓扑结构,并进行核心基因的搜寻、排序,同时绘制核心基因柱状图谱 [
Metascape基因功能分析数据库(https://metascape.org)列出了鱼腥草和急性肺损伤(ALI)的共同基因 [
从TCMSP数据库中提取了五种鱼腥草的活性成分,制成表(表1),然后,利用TCMSP和Uniport数据库,共识别出了132种鱼腥草相应的生物活性目标靶点,构建network1和type1文件,用Cytoscape去绘制“中药–成分–靶点”网络图(图1)。通过GeneCards、TTD和OMIM数据库确定与ALI相对应的靶基因,过滤和去除重复以后,总共得到了4602个ALI相关靶点基因。通过Venny在线平台将鱼腥草的靶点基因与ALI的靶点基因进行交集后,共得到了128个交集基因,并得到了韦恩图(图2(a))。最后,构建network2和type2文件,用Cytoscape软件绘制“中药–疾病–成分–靶点”相互作用的网络图(图2(b))。由图可见,鱼腥草可通过多成分、多靶点的途径在治疗急性肺损伤方面起到作用 [
图1. 鱼腥草“中药–成分–靶点”网络图,橙色三角形代表鱼腥草的活性成分,黄色圆形代表药物靶点
Mol ID | Molecule name | OB (%) | DL |
---|---|---|---|
MOL003851 | Isoramanone | 39.97 | 0.51 |
MOL000422 | kaempferol | 41.88 | 0.24 |
MOL004350 | Ruvoside_qt | 36.12 | 0.76 |
MOL004355 | Spinasterol | 42.98 | 0.76 |
MOL000098 | quercetin | 46.43 | 0.28 |
表1. 鱼腥草的有效活性成分
图2. 鱼腥草和ALI的交集靶点分析。(a) 鱼腥草和ALI交集靶点的韦恩图。(b) 鱼腥草与 ALI的“中药–疾病–成分–靶点”相互作用网络图
将获得鱼腥草和急性肺损伤的128个交集靶点置于String中 [
图3. 鱼腥草和ALI交集靶蛋白相互作用的分析。(a) 鱼腥草和ALI核心交集靶蛋白PPI网络图。(b) 鱼腥草和ALI核心交集靶蛋白相互作用网络图
图4. 鱼腥草和ALI交集靶点前20位核心靶点分子的柱状图
为了进一步研究鱼腥草能够治疗急性肺损伤以及相关机制。通过使用一系列在线数据库证明鱼腥草和急性肺损伤的关系,因此,在线Metascape数据库中提到了鱼腥草基因和急性肺损伤的共同基因。通过GO富集分析(如图5),鱼腥草治疗急性肺损伤及相关项目共得到了2200个。三线柱状图中挑选出了上述3个类别中的前10个项目进行对比作图用柱状图显示。其中,生物学结果显示鱼腥草能够提高急性肺损伤时机体内的氧动脉分压、减轻肺水肿、减低机体的平均动脉压。因此,我们推测出:鱼腥草中的有效成分对急性肺损伤有一定治疗作用。根据三线柱状图中所显示的细胞成分组成,得出相关结论:鱼腥草中的活性成分与酶蛋白和受体复合物、信号转导、蛋白磷酸化、等离子膜、钾离子等成分有关 [
富集分析,再将数据结果导入微生信在线数据平台进行可视化处理 [
图5. GO富集分析
图6. 鱼腥草和ALI核心靶点的KEGG途径富集和成分–靶点–途径分析(前20)。(a) 鱼腥草和ALI核心靶点的KEGG途径富集分析图。(b) 鱼腥草和ALI相互作用通路网络图(蓝色为活性成分;黄色为目标;粉红色为KEGG路径
本研究通过网络药理学,系统地探讨了鱼腥草治疗ALI的潜在作用机制。鱼腥草具有清热、解毒、镇痛、抗炎、抗病毒、抗哮喘等多种功能 [
网络药理学是基于大量的生物医学数据,去得到数据并绘制相应的网络图,然后分析鱼腥草的药理特性,并阐明中药、疾病、成分和靶点之间复杂的相互作用关系 [
本研究利用TCMSP数据库去收集鱼腥草的活性成分,根据化合物的OB (生物口服利用度)和DL (类药性)值去对鱼腥草进行有效活性成分的筛选,最终获得5种活性成分,山奈酚和槲皮素是鱼腥草最主要的成分,许玲芬等人研究发现槲皮素可能通过TLR4/NF-κB信号通路、JAK2/STAT3信号通路改善呼吸道感染小鼠免疫功能、抑制炎症反应,减轻肺损伤 [
通过UniProt数据库对有效活性成分进行靶点基因的收集,基于此通过Cytoscape绘制得到了“中药–成分–靶点”网络图,每种成分都对应一个或多个靶点基因,而每个靶点基因也都对应的有一种或多种成分,由此,说明了中药多成分、多靶点的作用特点。
本研究得到鱼腥草治疗急性肺损伤的主要靶点有MAPK1、AKT1、RELA、TNF、TP53、IL6、MAPK8、RXRA。通过GO分析得出鱼腥草的生物学结果,主要是鱼腥草中的成分对是激素反应、无机物质反应、细胞对脂类的反应、脂类聚糖反应的负调控和以及对氧气水平的反应 [
综上所述,本研究是运用网络药理学的方法对鱼腥草治疗ALI的成分、靶点和作用机制进行了探讨,推测可能是活性成分槲皮素和山奈酚等通过信号通路HIF-1 signaling pathway信号通路、EGFR tyrosine kinase inhibitor resistance信号通路等,去作用于靶点MAPK1、AKT1、RELA、TNF、TP53、IL6、MAPK8、RXRA等。
通过本项研究,我们希望挖掘出鱼腥草抗肺炎方面更为全面的药用价值,为治疗急性肺损伤提供一些理论依据,从而得到更为高效的治疗手段。然而,由于数据库的不完整、潜在目标的不足和实验条件的限制,因此没有考虑到低丰富度活性组分、实验验证以及未对成分与靶点的相互作用关系及机制作进一步的验证,所以仍然需要进行补充完善。
丽江文化旅游学院大创项目:基于网络药理学探讨鱼腥草治疗急性肺损伤的作用机制(项目编号:XC202311)。
祁一凡,李 艳,田永洁,段胜兰,李宜函. 基于网络药理学探讨鱼腥草治疗急性肺损伤的作用机制Exploring the Mechanism of Houttuynia cordata in Treating Acute Lung Injury Based on Network Pharmacology[J]. 生物医学, 2024, 14(02): 342-352. https://doi.org/10.12677/hjbm.2024.142038
https://doi.org/10.3389/fphar.2022.801337
http://kns.cnki.net/kcms/detail/34.1086.r.20231130.1318.006.html, 2023-12-02.
https://doi.org/10.16155/J.0254-1793.2022.01.12
https://doi.org/10.13633/J.Cnki.Zjtcm.2023.05.016
https://doi.org/10.16043/J.Cnki.Cfs.2023.01.063
http://kns.cnki.net/kcms/detail/11.3436.r.20231130.1515.006.html, 2023-12-02.
https://doi.org/10.13457/J.Cnki.Jncm.2023.18.020
https://doi.org/10.13457/J.Cnki.Jncm.2023.16.020
https://doi.org/10.13863/J.Issn1001-4454.2021.09.033
https://doi.org/10.4103/wjtcm.wjtcm_11_21
https://doi.org/10.1016/S1875-5364(13)60037-0
https://doi.org/10.1016/S1875-5364(21)60001-8
https://doi.org/10.1007/s11655-019-3064-0
https://doi.org/10.1371/journal.pone.0252508
http://kns.cnki.net/kcms/detail/11.5895.r.20231201.1414.004.html, 2023-12-03.
https://doi.org/10.16720/J.Cnki.Tcyj.2023.162, 2023-10-29.
https://doi.org/10.19879/j.cnki.1005-5304.202303696, 2023-10-27.
https://doi.org/10.13422/j.cnki.syfjx.20231215, 2023-10-27.
http://kns.hggfdd.top/kcms/detail/42.1204.r.20230919.1434.002.html, 2023-10-29.
https://doi.org/10.13699/J.Cnki.1001-6821.2019.17.028
https://doi.org/10.1177/1934578X221093907