单细胞RNA测序技术为糖尿病肾病的研究提供了全面、动态的视角,为肾脏中复杂的基因网络和细胞相互作用的研究提供了新的途径,不仅揭示了肾脏中各种细胞类型的存在和功能差异,还在细胞通讯的研究中发挥了重要作用。然而,其在糖尿病肾病领域中的应用仍需面对技术局限性以及对因果关系的理解等挑战。未来,单细胞RNA测序技术的深入研究和发展,结合其他技术的创新将推动我们对糖尿病肾病的理解并为其诊治提供理论和实验基础。 Single-cell RNA sequencing technology has provided a comprehensive and dynamic perspective on diabetic nephropathy, offering a new way to study the complex gene networks and cellular interactions in the kidney, which not only reveals the differences in the existence and functions of various cell types in the kidney, but also plays an important role in the study of cellular communication. However, its application in the field of diabetic nephropathy still needs to face challenges such as technical limitations and understanding of causal relationships. In the future, in-depth research and development of single-cell RNA sequencing technology, combined with other technological innovations, will advance our understanding of diabetic nephropathy and provide a theoretical and experimental basis for its diagnosis and treatment.
Single-cell RNA sequencing technology has provided a comprehensive and dynamic perspective on diabetic nephropathy, offering a new way to study the complex gene networks and cellular interactions in the kidney, which not only reveals the differences in the existence and functions of various cell types in the kidney, but also plays an important role in the study of cellular communication. However, its application in the field of diabetic nephropathy still needs to face challenges such as technical limitations and understanding of causal relationships. In the future, in-depth research and development of single-cell RNA sequencing technology, combined with other technological innovations, will advance our understanding of diabetic nephropathy and provide a theoretical and experimental basis for its diagnosis and treatment.
宋钰晖,王玉荣. 基于单细胞RNA测序技术的糖尿病肾病研究进展Research Progress of Diabetic Kidney Disease Based on Single-Cell RNA Sequencing[J]. 生物医学, 2024, 14(02): 323-330. https://doi.org/10.12677/hjbm.2024.142036
参考文献References
Vallon, V. and Komers, R. (2011) Pathophysiology of the Diabetic Kidney. Comprehensive Physiology, 1, 1175-1232. https://doi.org/10.1002/cphy.c100049
Ricciardi, C.A. and Gnudi, L. (2021) Kidney Disease in Diabetes: From Mechanisms to Clinical Presentation and Treatment Strategies. Metabolism, 124, Article ID: 154890. https://doi.org/10.1016/j.metabol.2021.154890
Reidy, K., Kang, H.M., Hostetter, T. and Susztak, K. (2014) Molecular Mechanisms of Diabetic Kidney Disease. Journal of Clinical Investigation, 124, 2333-2340. https://doi.org/10.1172/JCI72271
Azushima, K., Gurley, S.B. and Coffman, T.M. (2018) Modelling Diabetic Nephropathy in Mice. Nature Reviews Nephrology, 14, 48-56. https://doi.org/10.1038/nrneph.2017.142
Balzer, M.S., Rohacs, T. and Susztak, K. (2022) How Many Cell Types Are in the Kidney and What Do They Do? Annual Review of Physiology, 84, 507-531. https://doi.org/10.1146/annurev-physiol-052521-121841
Wang, P., Chen, Y., Yong, J., Cui, Y., Wang, R., Wen, L., Qiao, J. and Tang, F. (2018) Dissecting the Global Dynamic Molecular Profiles of Human Fetal Kidney Development by Single-Cell RNA Sequencing. Cell Reports, 24, 3554-3567.E3553. https://doi.org/10.1016/j.celrep.2018.08.056
Lake, B.B., Menon, R., Winfree, S., Hu, Q., Melo Ferreira, R., Kalhor, K., Barwinska, D., Otto, E.A., Ferkowicz, M., Diep, D., et al. (2023) An Atlas of Healthy and Injured Cell States and Niches in the Human Kidney. Nature, 619, 585-594.
Wu, H., Gonzalez Villalobos, R., Yao, X., Reilly, D., Chen, T., Rankin, M., Myshkin, E., Breyer, M.D., Humphreys, B.D. (2022) Mapping the Single-Cell Transcriptomic Response of Murine Diabetic Kidney Disease to Therapies. Cell Metabolism, 34, 1064-1078.E1066. https://doi.org/10.1016/j.cmet.2022.05.010
Wilson, P.C., Wu, H., Kirita, Y., Uchimura, K., Ledru, N., Rennke, H.G., Welling, P.A., Waikar, S.S. and Humphreys, B.D. (2019) The Single-Cell Transcriptomic Landscape of Early Human Diabetic Nephropathy. Proceedings of the National Academy of Sciences of the United States of America, 116, 19619-19625. https://doi.org/10.1073/pnas.1908706116
Dhillon, P., Park, J., Hurtado Del Pozo, C., Li, L., Doke, T., Huang, S., Zhao, J., Kang, H.M., Shrestra, R., Balzer, M.S., et al. (2021) The Nuclear Receptor ESRRA Protects From Kidney Disease by Coupling Metabolism and Differentiation. Cell Metabolism, 33, 379-394.E378. https://doi.org/10.1016/j.cmet.2020.11.011
Wu, J., Sun, Z., Yang, S., Fu, J., Fan, Y., Wang, N., Hu, J., Ma, L., Peng, C., Wang, Z., et al. (2022) Kidney Single-Cell Transcriptome Profile Reveals Distinct Response of Proximal Tubule Cells to SGLT2i and ARB Treatment in Diabetic Mice. Molecular Therapy, 30, 1741-1753. https://doi.org/10.1016/j.ymthe.2021.10.013
Tsai, Y.C., Kuo, M.C., Huang, J.C., Chang, W.A., Wu, L.Y., Huang, Y.C., Chang, C.Y., Lee, S.C. and Hsu, Y.L. (2023) Single-Cell Transcriptomic Profiles in the Pathophysiology within the Microenvironment of Early Diabetic Kidney Disease. Cell Death & Disease, 14, Article No. 442. https://doi.org/10.1038/s41419-023-05947-1
Thomas, M.C., Brownlee, M., Susztak, K., Sharma, K., Jandeleit-Dahm, K.A., Zoungas, S., Rossing, P., Groop, P.H. and Cooper, M.E. (2015) Diabetic Kidney Disease. Nature Reviews Disease Primers, 1, Article No. 15018. https://doi.org/10.1038/nrdp.2015.18
Liu, S., Zhao, Y., Lu, S., Zhang, T., Lindenmeyer, M.T., Nair, V., Gies, S.E., Wu, G., Nelson, R.G., Czogalla, J., et al. (2023) Single-Cell Transcriptomics Reveals a Mechanosensitive Injury Signaling Pathway in Early Diabetic Nephropathy. Genome Medicine, 15, Article No. 2. https://doi.org/10.1186/s13073-022-01145-4
Fu, J., Akat, K.M., Sun, Z., Zhang, W., Schlondorff, D., Liu, Z., Tuschl, T., Lee, K. and He, J.C. (2019) Single-Cell RNA Profiling of Glomerular Cells Shows Dynamic Changes in Experimental Diabetic Kidney Disease. Journal of the American Society of Nephrology, 30, 533-545. https://doi.org/10.1681/ASN.2018090896
宋凯云, 刘必成, 汤日宁. 内皮-足细胞对话在糖尿病肾病中的研究进展[J]. 中华肾脏病杂志, 2019, 35(3): 231-235. https://doi.org/10.3760/cma.j.issn.1001-7097.2019.03.014
Najafian, B., Kim, Y., Crosson, J.T. and Mauer, M. (2003) Atubular Glomeruli and Glomerulotubular Junction Abnormalities in Diabetic Nephropathy. Journal of the American Society of Nephrology, 14, 908-917. https://doi.org/10.1097/01.ASN.0000057854.32413.81
Xu, T., Sheng, Z. and Yao, L. (2017) Obesity-Related Glomerulopathy: Pathogenesis, Pathologic, Clinical Characteristics and Treatment. Frontiers in Medicine, 11, 340-348. https://doi.org/10.1007/s11684-017-0570-3
Lan, H.Y. (2011) Diverse Roles of TGF-β/Smads in Renal Fibrosis and Inflammation. International Journal of Biological Sciences, 7, 1056-1067. https://doi.org/10.7150/ijbs.7.1056
Lu, Y., Ye, Y., Yang, Q. and Shi, S. (2017) Single-Cell RNA-Sequence Analysis of Mouse Glomerular Mesangial Cells Uncovers Mesangial Cell Essential Genes. Kidney International, 92, 504-513. https://doi.org/10.1016/j.kint.2017.01.016
Schlöndorff, D. and Banas, B. (2009) The Mesangial Cell Revisited: No Cell Is an Island. Journal of the American Society of Nephrology, 20, 1179-1187. https://doi.org/10.1681/ASN.2008050549
Murphy, M., Hickey, F. and Godson, C. (2013) IHG-1 Amplifies TGF-β1 Signalling and Mitochondrial Biogenesis and Is Increased in Diabetic Kidney Disease. Current Opinion in Nephrology and Hypertension, 22, 77-84. https://doi.org/10.1097/MNH.0b013e32835b54b0
Wei, Y., Gao, X., Li, A., Liang, M. and Jiang, Z. (2021) Single-Nucleus Transcriptomic Analysis Reveals Important Cell Cross-Talk in Diabetic Kidney Disease. Frontiers in Medicine(Lausanne), 8, Article ID: 657956. https://doi.org/10.3389/fmed.2021.657956
Olden, M., Corre, T., Hayward, C., Toniolo, D., Ulivi, S., Gasparini, P., Pistis, G., Hwang, S.J., Bergmann, S., Campbell, H., et al. (2014) Common Variants in UMOD Associate with Urinary Uromodulin Levels: A Meta-Analysis. Journal of the American Society of Nephrology, 25, 1869-1882. https://doi.org/10.1681/ASN.2013070781
Pannabecker, T.L. (2012) Structure and Function of the Thin Limbs of the Loop of Henle. Comprehensive Physiology, 2, 2063-2086. https://doi.org/10.1002/cphy.c110019
Chen, L., Chou, C.L. and Knepper, M.A. (2021) Targeted Single-Cell RNA-Seq Identifies Minority Cell Types of Kidney Distal Nephron. Journal of the American Society of Nephrology, 32, 886-896. https://doi.org/10.1681/ASN.2020101407
Kirita, Y., Wu, H., Uchimura, K., Wilson, P.C. and Humphreys, B.D. (2020) Cell Profiling of Mouse Acute Kidney Injury Reveals Conserved Cellular Responses to Injury. Proceedings of the National Academy of Sciences of the United States of America, 117, 15874-15883. https://doi.org/10.1073/pnas.2005477117
Burg, M.B. (1982) Thick Ascending Limb of Henle’s Loop. Kidney International, 22, 454-464. https://doi.org/10.1038/ki.1982.198
Zhang, J., Wei, J., Jiang, S., Xu, L., Wang, L., Cheng, F., Buggs, J., Koepsell, H., Vallon, V. and Liu, R. (2019) Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia. Journal of the American Society of Nephrology, 30, 578-593. https://doi.org/10.1681/ASN.2018080844
McCormick, J.A. and Ellison, D.H. (2015) Distal Convoluted Tubule. Comprehensive Physiology, 5, 45-98. https://doi.org/10.1002/cphy.c140002
Park, J., Shrestha, R., Qiu, C., Kondo, A., Huang, S., Werth, M., Li, M., Barasch, J. and SusztÁK, K. (2018) Single-Cell Transcriptomics of the Mouse Kidney Reveals Potential Cellular Targets of Kidney Disease. Science, 360, 758-763. https://doi.org/10.1126/science.aar2131
Wu, C., Tao, Y., Li, N., Fei, J., Wang, Y., Wu, J. and Gu, H.F. (2023) Prediction of Cellular Targets in Diabetic Kidney Diseases with Single-Cell Transcriptomic Analysis of Db/Db Mouse Kidneys. Journal of Cell Communication and Signaling, 17, 169-188. https://doi.org/10.1007/s12079-022-00685-z
Lu, X., Li, L., Suo, L., Huang, P., Wang, H., Han, S. and Cao, M. (2022) Single-Cell RNA Sequencing Profiles Identify Important Pathophysiologic Factors in the Progression of Diabetic Nephropathy. Frontiers in Cell and Developmental Biology, 10, Article ID: 798316. https://doi.org/10.3389/fcell.2022.798316